TWR-17544-5

Flight Motor Set 360H005 (STS-28R) Final Report

Volume V (Nozzle Component)

September 1990

Prepared for:

National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

Contract No. NAS8-30490
DR No. 5-3
WBS No. 4B601-03-08
ECS No. SS-1013

Thickol CORPORATION

SPACE OPERATIONS

P.O. Box 707, Brigham City, UT 84302-0707 (801) 863-3511

Publications No. 90183

(NASA-CR-184027) FLIGHT MOTOR SET 360H005 (STS-28R). VOLUME 5: (NOZZLE COMPONENT) Final Report (Thiokol Corp.) 342 pCSCL 21H N91-12746

Unclas 0309741

G3/20

tang mengangkan penggapan dan penggapan berangkan di penggapan penggapan dan penggapan dan penggapan dan pengg Penggapan penggapan dan penggapan dan penggapan penggapan penggapan penggapan penggapan penggapan penggapan pe
r <u>a</u> control of the

Flight Motor Set 360H005 (STS-28R) Final Report Volume V (Nozzle Component)

September 1990

Prepared by:

DAN SMITH, JR. Rusself. George
D. M. Smith, Jr.
Nozzle/TVC Design

Approved by:

R. K. Wilks, Manager

Nonmetallic Component Design

H. D. Huppi Systems Integration Engineering

System Safety

Certification Planning

J. E. Fonnesbeck, Supervisor Nozzle/TVC Design

Dul

SRM Nozzle Programs

/

Data Management

SS1013

....

region in the second of the se

ing the state of the second of the state of

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	OBJECTIVES
3.0	CONCLUSIONS AND RECOMMENDATIONS
4.0	RESULTS/DISCUSSION
5.0	DISCREPANCY REPORTS AND PROCESS DEPARTURES
6.0	NOZZLE COMPONENT PROGRAM TEAM RECOMMENDATIONS AND RPRB ASSESSMENT
Appe Appe	ndix A

TWR-17544 | VOL DOC NO. PAGE SEC i

en de la companya de la co

List of Figures

Figure	1	STS-28 Nozzle Components 43
Figure	2	STS-28A Nozzle Material 44
Figure	3	STS-28B Nozzle Material 45
Figure	4	STS-28A Joint Flow Surface Gap Openings 46
Figure	5	STS-28A Forward Nozzle Assy (External) 0-to-90-to-180 deg 47
Figure	6	STS-28A Forward Nozzle Assy (External) 180-to-270-to-0 deg 48
Figure		STS-28A Aft Exit Cone Fragment 49
Figure	8	STS-28A Forward Exit Cone Bondline Separations 51
Figure	9	STS-28A Forward Exit Cone Liner Section (0 deg) 52
Figure	10	STS-28A Forward Exit Cone Liner Section (90 deg) 53
Figure	11	STS-28A Forward Exit Cone Liner Section (180 deg) 54
Figure	12	STS-28A Forward Exit Cone Liner Section (270 deg) 55
Figure	13	STS-28A Forward Exit Cone Assy Nozzle Stations 57
Figure	14	STS-28A Throat Assy Bondline Separations 58
Figure	15	STS-28A Throat/Throat Inlet Section (0 deg) 59
Figure	16	STS-28A Throat/Throat Inlet Section (90 deg) 60
Figure	17	STS-28A Throat/Throat Inlet Section (180 deg) 61
Figure	18	STS-28A Throat/Throat Inlet Section (270 deg) 62
Figure	19	STS-28A Throat Inlet Assy Erosion Measurement Stations 64
Figure	20	STS-28A Nose Inlet Assy Bondline Separations 65
Figure	21	STS-28A Forward Nose Ring and Aft Inlet Ring (-503 and -504)
		Section (0 deg) 66
Figure	22	STS-28A Forward Nose Ring and Aft Inlet Ring (-503 and -504)
		Section (90 deg) 67
Figure	23	STS-28A Forward Nose Ring and Aft Inlet Ring (-503 and -504)
		Section (180 deg)
Figure	24	STS-28A Forward Nose Ring and Aft Inlet Ring (-503 and -504)
		Section (270 deg)
Figure	25	STS-28A Nose Cap Section (0 deg)
Figure	26	STS-28A Nose Cap Section (90 deg) 71
Figure	27	STS-28A Nose Cap Section (180 deg)
Figure	28	STS-28A Nose Cap Section (270 deg) 73
Figure	29	STS-28A Nose Inlet Assy Erosion Measurement Stations 77
		STS-28A Cowl/OBR Closeup (0 deg)
Figure	31	STS-28A Cowl/OBR Closeup (90 deg)
Figure	32	STS-28A Cowl/OBR Closeup (180 deg)
Figure	33	STS-28A Cowl/OBR Closeup (270 deg)
		STS-28A Cowl Ring Section (0 deg) 82
		STS-28A Cowl Ring Section (90 deg)
Figure	36	STS-28A Cowl Ring Section (180 deg)
Figure	37	STS-28A Cowl Ring Section (270 deg)
Figure	38	STS-28A Cowl Ring and Outer Boot Ring Erosion Measurement
		Stations 88

DOC NO. TWR-1.7544 VOL

in the second se	इ.स.च्याच्याच्याच्याच्याच्याच्या	and Carlotter	
	en e		
	• · · · · · · · · · · · · · · · · · · ·		
		.	

<u>--</u>

₹

List of Figures (Cont)

Figure	39	STS-28A Outer Boot Ring Section (O deg)
Figuro	40	STS_28A Outer Boot Ring Section (90 deg)90
Figure	41	STS_284 Outer Boot Ring Section (180 deg)
Figure	42	STS-28A Outer Boot Ring Section (2/U deg) $\cdot \cdot \cdot$
Piguro	٨٦	STS_28A Flex Boot (Cavity Side - U deg)
Figure	1.1.	STS_2RA Flex Boot (Cavity Side - 90 deg)
Figuro	45	CTC_78A Flex Root (Cavity Side - 180 deg)
Figure	46	CTC_28A Fixed Housing Section (U deg)
Figure	47	STS_28A Fixed Housing Section (90 deg)
Figuro	ΛΩ	STS_28A Fixed Housing Section (180 deg)
Figure	/, Q	STS_28A Fixed Housing Section (2/0 deg) \cdots
Figure	50	Fixed Housing Liner Erosion Measurement Station
Figure	51	STS_28A Rearing Protector (45 deg) \dots
Figuro	52	STS_28A Rearing Protector (90) deg)
Piguro	5.3	$CTC_{-}78A$ Rearing Protector (135 deg)
Figure	54	STS_28A Flex Rearing (90) deg) 100
Figuro	55	CTC_2RA Flow Rearing (2/0) deg)
Figure	56	GTG_28A Forward Exit Cone-to-Aft Exit Cone Joint Interface
		(Inint #1)
Figure	57	STS_28A Aft Exit Cone Forward End (0 deg)
Figure	58	STS_28A Aft Exit Cone Forward End (90 deg)
Figure	50	STS_28A Aft Exit Cone - Forward End (270 deg) \cdots
Figure	60	STS_28A Forward Exit Cone - Aft End (0 deg) \cdots
Figure	61	STS-28A Forward Exit Cone - Att End (90 deg)
Figure	62	STS-28A Forward Exit Cone - Aft End (180 deg)
Figure	63	STS_28A Aft Exit Cone Forward Face Powder Residue (2/0 deg)
Figure	64	STS_28A Throat/Forward Exit Cone Joint (Joint #4)
Figure	65	STS-28A Forward Exit Cone - Forward End (U deg)
Figure	66	STS_28A Forward Exit Cone - Forward End (60 deg)
Figure	67	STS-28A Forward Exit Cone - Forward End (180 deg)
Figure	6B	STS_28A Throat Aft End (() deg)
Figure	69	STS_28A Throat Aft End (60) deg) $\dots\dots\dots$
Figure	70	STS_28A Throat Aft End (180) deg)
Figure	71	STS_28A Nose Inlet/Throat Housing Joint (Joint #3)
Figure	72	STS_28A Throat - Forward End (0 deg) \dots
Figure	73	STS_28A Throat - Forward End (120 deg)
Figure	74	STS_28A Throat - Forward End (240 deg) \dots
Figure	75	STS-28A Aft Inlet (-504) Ring - Aft End (U deg)
Figure	76	STS_28A Aft Inlet (-504) Ring - Aft End (120 deg)
Figure	77	STS_28A Aft Inlet (-504) Ring $-$ Aft End (240 deg) \cdots
Figure	72	STS_28A Nose Inlet Housing/Flex Bearing Joint (Joint #4)13
Figure	. 79	STS_28A Cowl = Forward End (0 deg)
Figure	- 80	STS-28A Cowl - Forward End (120 deg) \dots
Figure	81	STS-28A Cowl - Forward End (240 deg)

TWR-17544 vol DOC NO. SEC iii

en de la composition La composition de la

List of Figures (Cont)

Figure	82	STS-28A Nose Cap - Aft End (0 deg)
Figure	83	STS-28A Nose Cap - Aft End (120 deg)
Figure	84	STS-28A Nose Cap - Aft End (240 deg)
Figure	85	STS-28A Bearing Forward End Ring (O deg)
Figure	86	STS-28A Bearing Forward End Ring (120 deg)
Figure	87	STS-28A Bearing Forward End Ring (240 deg)
Figure	88	STS-28A Cowl Forward End - Blowpath Location (318 deg)140
Figure	89	STS-28A Flex Bearing/Fixed Housing Joint (Joint #5)141
Figure	90	STS-28A Fixed Housing Forward End (0 deg)
Figure	91	STS-28A Fixed Housing Forward End (120 deg)143
Figure	92	STS-28A Fixed Housing Forward End (240 deg)144
Figure	93	STS-28A Bearing Aft End Ring (0 deg)
Figure	94	STS-28A Bearing Aft End Ring (120 deg)
Figure	95	STS-28A Bearing Aft End Ring (240 deg)
Figure	96	STS-28B Joint Flow Surface Gap Openings
Figure	97	STS-28B Forward Nozzle Assembly149
Figure	98	STS-28B Forward Nozzle Assembly150
Figure	99	STS-28B Forward Nozzle Assembly (External)
•		0-to-90-to-180 deg
Figure	100	STS-28B Forward Nozzle Assembly (External)
_		180-to-270-to-0 deg
Figure	101	STS-28B Aft Exit Cone Fragment
Figure	102	STS-28B Forward Exit Cone Bondline Separations155
Figure	103	STS-28B Forward Exit Cone Liner Section (0 deg)156
Figure	104	STS-28B Forward Exit Cone Liner Section (90 deg)157
Figure	105	STS-28B Forward Exit Cone Liner Section (270 deg)158
Figure	106	STS-28B Throat Assy Bondline Separations160
Figure	107	STS-28B Throat/Throat Inlet Section (0 deg)161
Figure	108	STS-28B Throat/Throat Inlet Section (90 deg)162
Figure	109	STS-28B Throat/Throat Inlet Section (180 deg)163
		STS-28B Throat/Throat Inlet Section (270 deg)
Figure	111	STS-28B Nose Inlet Assy Bondline Separations166
Figure	112	STS-28B Forward Nose Ring and Aft Inlet Ring (-503 and -504)
		Section (0 deg)167
Figure	113	S STS-28B Forward Nose Ring and Aft Inlet Ring (-503 and -504)
		Section (90 deg)168
		STS-28B Forward Nose Ring and Aft Inlet Ring (-503 and -504)
		Section (180 deg)169
Figure	115	STS-28B Forward Nose Ring and Aft Inlet Ring (-503 and -504)
		Section (270 deg)170
Figure	116	STS-28B Nose Cap Section (O deg)
		STS-28B Nose Cap Section (90 deg)
Figure	118	3 STS-28B Nose Cap Section (180 deg)
Figure	119	STS-28B Nose Cap Section (270 deg)

TWR-17544 vol DOC NO. PAGE SEC iv

u produkti sa kanala kanala sa kanala sa

List of Figures (Cont)

			4 -	
Figure	120	STS-28B	Cowl Ring Section (0 deg)	78
Figure	121	STS-28B	Cowl Ring Section (90 deg)	79
Figure	122	STS-28B	Cowl Ring Section (180 deg)18	30
Figure	123	STS-28B	Cowl Ring Section (270 deg)18	31
Figure	124	STS-28B	Outer Boot Ring Section (O deg)	34
Figure	125	STS-28B	Outer Boot Ring Section (90 deg)18	35
Figure	126	STS-28B	Outer Boot Ring Section (180 deg)	86
Figure	127	STS-28B	Outer Boot Ring Section (270 deg)	87
Figure	128	STS-28B	Flex Boot (Cavity Side - 0 deg)	88
Figure	129	STS-28B	Flex Boot (Cavity Side - 120 deg)	89
Figure	130	STS-28B	Flex Boot (Cavity Side - 240 deg)	90
Figure	131	STS-28B	Fixed Housing Section (0 deg)	92
Figure	132	STS-28B	Fixed Housing Section (90 deg)	93
Figure	133	STS-28B	Fixed Housing Section (180 deg)	94
Figure	134	STS-28B	Fixed Housing Section (270 deg)	95
Figure	135	STS-28B	Bearing Protector (O deg)	97
Figure	136	STS-28B	Bearing Protector (90 deg)	98
Figure	137	STS-28B	Bearing Protector (270 deg)	99
Figure	138	STS-28B	Flex Bearing (0 deg)20	00
Figure	139	STS-28B	Flex Bearing (180 deg)20	IJĺ
Figure	140	STS-28B	Aft Exit Cone-to-Forward Exit Cone Joint Interface	~ ~
		(Joint	#1)20	UΖ
Figure	141	STS-28B	Aft Exit Cone Forward End (0 deg)20	03
Figure	142	STS-28B	Aft Exit Cone Forward End (120 deg)20	04
Figure	143	STS-28B	Aft Exit Cone Forward End (240 deg)20	05
Figure	144	STS-28B	Forward Exit Cone - Aft End (0 deg)20	06
Figure	145	STS-28B	Forward Exit Cone - Aft End (120 deg)20	07
Figure	146	STS-28B	Forward Exit Cone - Aft End (240 deg)20	08
Figure	147	STS-28B	Forward Exit Cone - Aft End (91.8 deg)20	09
Figure	148	STS-28B	Throat/Forward Exit Cone Joint (Joint #4)2	10
Figure	149	STS-28B	Forward Exit Cone - Forward End (0 deg)2	11
Figure	150	STS-28B	Forward Exit Cone - Forward End (120 deg)2	12
Figure	151	STS-28B	Forward Exit Cone - Forward End (240 deg)2	13
Figure	152	STS-28B	Throat Aft End (0 deg)2	14
Figure	153	STS-28B	Throat Aft End (120 deg)	10
Figure	154	STS-28B	Throat Aft End (240 deg)	16
Figure	155	STS-28B	Nose Inlet/Throat Housing Joint (Joint #3)2	1/
Figure	156	STS-28B	Throat - Forward End (0 deg)	18
Figure	157	STS-28B	Throat - Forward End (120 deg)2	19
Figure	158	STS-28B	Throat - Forward End (240 deg)	20
Figure	159	STS-28B	Aft Inlet (-504) Ring - Aft End (0 deg)23	21
Figure	160	STS-28B	Aft Inlet (-504) Ring - Aft End (120 deg)2	22
Figure	161	STS-28B	Aft Inlet (-504) Ring - Aft End (240 deg)2	23
Figure	162	STS-28B	Aft Inlet (-504) Ring - Aft End (203 deg)2	24

DOC NO. TWR-17544 VOL

List of Figures (Cont)

Figure	163	STS-28B	Nose Inlet Housing/Flex Bearing Joint (Joint #2)225
Figure	164	STS-28B	Cowl - Forward End (0 deg)226
Figure	165	STS-28B	Cowl - Forward End (120 deg)227
Figure	166	STS-28B	Cowl - Forward End (240 deg)228
Figure	167	STS-28B	Nose Cap - Aft End (0 deg)229
Figure	168	STS-28B	Nose Cap - Aft End (120 deg)230
Figure	169	STS-28B	Nose Cap - Aft End (240 deg)231
Figure	170	STS-28B	Bearing Forward End Ring (0 deg)232
Figure	171	STS-28B	Bearing Forward End Ring (120 deg)233
Figure	172	STS-28B	Bearing Forward End Ring (240 deg)234
Figure	173	STS-28B	Flex Bearing/Fixed Housing Joint (Joint #5)235
Figure	174	STS-28B	Bearing Aft End Ring (O deg)236
Figure	175	STS-28B	Bearing Aft End Ring (120 deg)237
Figure	176	STS-28B	Bearing Aft End Ring (240 deg)238
Figure	177	STS-28B	Fixed Housing Forward End (0 deg)239
Figure	178	STS-28B	Fixed Housing Forward End (120 deg)240
Figure	179	STS-28B	Fixed Housing Forward End (240 deg)241

DOC NO. TWR-17544 VOL

normania. Tanàna dia mandritry ny fivondronana ao amin'ny fivondronana ao amin'ny fivondronana ao amin'ny fivondronana ao amin'ny faritr'i Australa ao amin'ny fa

List of Tables

Table	1	STS-28A	Aft Exit Cone Postflight Polysulfide Groove Radial
		Widths .	50
Table	2	STS-28A	Forward Exit Cone Erosion and Char Data 56
Table	3	STS-28A	Throat Assembly Erosion and Char Data
Table	4	STS-28A	Nose Inlet Rings (-503, -504) Erosion and Char Data 74
Table	5	STS-28A	Nose Cap Assembly Erosion and Char Data
Table	6	STS-28A	Cowl/OBR Erosion and Char Data 86
Table	7	STS-28A	Flex Boot Data Performance Margins of Safety 96
Table	8	STS-28A	Fixed Housing Insulation Erosion and Char Data101
Table	9	STS-28B	Aft Exit Cone Postflight Polysulfide Groove Radial
		Widths .	
Table	10	STS-28B	Forward Exit Cone Erosion and Char Data
Table	11	STS-28B	Throat Assembly Erosion and Char Data165
Table	12	STS-28B	Nose Inlet Rings (-503, -504) Erosion and Char Data 175
Table	13	STS-28B	Nose Cap Assembly Erosion and Char Data
Table	14	STS-28B	Cowl/OBR Erosion and Char Data182
Table	15	STS-28B	Flex Boot Data Performance Margins of Safety191
Table	16	STS-28B	Fixed Housing Insulation Erosion and Char Data196

DOC NO. TWR-17544 VOL

						-
						_
						,
						<u>: =</u>
		-				
	1. 1 .	t		i de la companya de	. Here is the man	. =
						-
						7
						==
						= -
						-
						•
						<u>بر</u> ت
						7 = 1 -
						. -
						=
						-
						-
						₩.
						~
						-
						 :
						_
						_

1.0 INTRODUCTION

A review of the performance and postflight condition of the STS-28 Redesigned Solid Rocket Motor (RSRM) nozzles is presented in this document. Applicable Discrepancy Reports (DRs) and Process Departures (PDs) are presented in Section 5.0. The Nozzle Component Program Team (NCPT) performance evaluation and the Redesign Program Review Board (RPRB) assessment is included in Section 6.0.

The STS-28 nozzle assemblies were flown on the RSRM Fifth Flight (Space Shuttle Columbia) on 08 August 1989. The nozzles were a partially submerged convergent/divergent movable design with an aft pivot point flexible bearing. The nozzle assemblies (see Figure 1) incorporated the following features:

- a. RSRM forward exit cone with snubber assembly
- b. RSRM fixed housing
- c. Structural backup Outer Boot Ring (OBR)
- d. RSRM cowl ring
- e. RSRM nose inlet assembly
- f. RSRM throat assembly
- g. RSRM forward nose and aft inlet ring

DOC NO. TWR-17544 VOL

- h. RSRM aft exit cone assembly with Linear-Shaped Charge (LSC)
- i. RTV backfill in Joints 1, 3, and 4
- j. Use of EA913 NA adhesive in place of EA913 adhesive
- k. Redesigned nozzle plug
- 1. Carbon Cloth Phenolic (CCP) with 750 ppm sodium content

Figures 2 and 3 show the CCP material usage for the STS-28 forward nozzle and aft exit cone assemblies.

DOC NO. TWR-17544 VOL SEC PAGE

REVISION _

2.0 OBJECTIVES

The RSRM Fifth Flight test objectives, as outlined in TWR-17544, Vol. I Flight Motor Set 360H005 Final Report/System Overview, are as follows (CPW1-3600 paragraph numbers are in parentheses):

Objectives by Inspection:

- Verify that flexible bearing seals operate within the specified G. temperature range (3.2.1.2.3.b).
- Verify that flexible bearing maintained a positive gas seal between Η. its internal components (3.2.1.2.3d).
- Inspect flexible bearing for damage due to water impact L. (3.2.1.4.6).
- Verify performance of the nozzle liner (3.2.1.4.13). N.
- Verify that nozzle metal parts are reusable (3.2.1.9.b). Х.
- Verify through flight demonstration and a postflight inspection Υ. that the flexible bearing is reusable (3.2.1.9.c).
- Verify by inspection the remaining nozzle ablative thicknesses AJ. (3.3.6.1.2.7).
- Verify the nozzle performance margins of safety (3.3.6.1.2.8). AK.

TWR-17544 vol DOC NO. SEC PAGE 3

3.0 SUMMARY/CONCLUSTONS

Compliance to the flight test objectives is discussed below.

- G. Both flex bearing seals operated as expected within the specified temperature range.
- H. Inspection of the flex bearings showed a positive gas seal was maintained between the internal components.
- L. There were no indications of damage to the flex bearings due to water impact.
- N. No nozzle flame front liner erosion pockets were noted. All wedgeouts observed occurred postburn and do not affect liner performance. No prefire anomalies were found.
- X. All metal parts which have gone through refurbishment are acceptable for reuse. All other metal parts are in the refurbishment cycle. None have been rejected to date.
- Y. Both flex bearings performed satisfactorily during flight. A visual postflight inspection showed no evidence of anomalies. The STS-28A (LH) flex bearing passed acceptance tests (TWR-60080) and can be reused. The STS-28B (RH) flex bearing was written up on DR 165119 for unacceptable unbond area. This flex bearing has not undergone acceptance tests as yet.
- AJ. All nozzle liner remaining ablative thicknesses have met the design safety factors.
- AK. All nozzle liner performance margins of safety were zero or greater.

DOC NO. TWR-17544 VOL.

4.0 RESULTS/DISCUSSION

All STS-28 postflight nozzle observations are discussed in detail below. CCP liner Performance Margins of Safety (PMS) are presented using measured erosion, and corresponding measured char values adjusted to the end of action time.

4.1 STS-28A (LH) Nozzle/Flex Bearing

Overall erosion of the STS-28A forward nozzle assembly CCP ablative liner was smooth and uniform. All CCP delaminations, wedgeouts, and pop-ups were determined to be postburn occurrences. Soot was observed in joint 2 up to the primary 0-ring, but there was no blowby, erosion, or heat effect to the primary 0-rings.

Postflight subassembly flow surface gaps are shown in Figure 4. Overall views of the nozzle are shown in Figures 5 through 7.

4.1.1 STS-28A Nozzle Components

STS-28A Aft Exit Cone Assembly

Overall views of the STS-28A aft exit cone fragment are shown in Figure 7.

DOC NO.	TWR-17544 vol
SEC	PAGE

The aft exit cone was severed aft of the compliance ring by the LSC. The nozzle severance system performance was nominal. The exit cone cut was clean, with no unusual tearing or breaking. The remaining aft exit cone fragment showed missing CCP liner 360 degrees circumferentially. This is a typical postflight observation and occurs at LSC firing and at splashdown. Glass Cloth Phenolic (GCP) plies exposed by the missing liner showed no signs of heat effect. A void in exposed EA946 adhesive was found at approximately 80 degrees and measured 3 inches axially by 1 inch circumferentially. There was no metal exposed at this location.

A small pin-hole, approximately 0.010 inch in diameter, was found in the polysulfide at 268 degrees. This was 0.10 inch inboard of the aft exit cone shell. A small fiber, believed to be GCP, was embedded in the pin-hole. A foreign residue was also found on the surface of the polysulfide from 265 to 271 degrees. The residue was determined to be silica and silicon with small traces of salt.

The polysulfide groove fill on the forward end of the aft exit cone showed no separations. Postflight measurements of the polysulfide groove radial width (Table 1) show that the GCP insulator did not pull away from the aluminum shell during cooldown. The polysulfide shrank axially aft up to 0.08 inch.

DOC NO. TWR-17544 VOL

There were postburn separations observed within the GCP measuring 0.020 inch radially and were noted on the Outer Diameter (OD) of the primary 0-ring groove from 135 to 150 degrees.

STS-28A Forward Exit Cone Assembly

The forward exit cone showed missing CCP liner over the center-to-aft portion of the cone 360 degrees circumferentially. This is a typical postflight observation and occurs at splashdown and during Diver Operated Plug (DOP) insertion. The GCP insulator exposed by the missing liner showed no signs of heat effect. The CCP liner remained bonded on the forward 12 inches, 360 degrees circumferentially, and on the aft 3-to-7 inches of the cone from 180 to 210 degrees. These portions showed nominal erosion with no major washing or pocketing. The aft 3-to-7 inches of intact liner at 180-to-210 degrees showed the typical dimpled erosion pattern that has occurred on all flight and static test forward exit cones. The maximum radial depth of the dimpled erosion was 0.10 inch.

The aft end of the forward exit cone showed no bondline separations. The forward end of the forward exit cone showed bondline separations between the EA946 adhesive and the metal housing 360 degrees (with a maximum radial width of the separation 0.040 inch), cohesive separations within the adhesive (0.020 inch maximum radial width) from 135-to-150 degrees, and glass-to-glass separations from 0-to-5 degrees (0.015 inch maximum radial

DOC NO. TWR-17544 VOL

REVISION _

width), and 340-to-345 degrees (0.010 inch maximum radial width). Figure 8 lists the location and radial width measurements of all separations on the forward exit cone. These separations are typical observations which have been seen on previous static test and flight nozzles, and have been shown to occur postburn.

Photographs of the sectioned forward exit cone liner are presented in Figures 9 through 12. Char and erosion analysis of the sections is presented in Table 2. Figure 13 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.21 occurring at station 8 (180 degrees).

STS-28 Throat Assembly

The post-fired mean diameter of the throat was 55.975 inches (erosion rate of 8.78 mils/second based on an action time of 120.5 seconds). RSRM Nozzle postburn throat diameters have ranged from 55.787 to 56.048 inches. The flow surface bondline gap between the throat and throat inlet rings was 0.15 inch and is typical of past static test and flight nozzles.

Erosion of the throat and throat inlet rings was smooth and uniform with no wedgeouts observed. Popped-up charred CCP material was observed on the

DOC NO. TWR-17544 VOL

REVISION _

forward 1.5 inches of the throat and throat inlet ring intermittently around the circumference on the forward ends of both rings. Sharp edges indicate the popped-up material occurred after motor operation.

Bondline separations between the EA913 NA adhesive and the steel throat support housing were observed on the aft end 360 degrees circumferentially. was 0.040 these separations maximum radial width of The Metal-to-adhesive bondline separations measuring 0.01-to-0.03 inch wide radially were observed on the forward end of the throat assembly circumferentially except at 75-to-105, 165-to-180, and 270-to-330 degrees. Figure 14 lists the location and radial width measurements of all These separations are typical on the throat assembly. separations observations which have been seen on previous static test and flight nozzles and have been shown to occur postburn.

Photographs of the sectioned throat assembly liner are presented in Figures 15 through 18. Char and erosion analysis of the sections is presented in Table 3. Figure 19 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.03 occurring at station 8 (90 degrees).

DOC NO. TWR-17544 VOL

STS 28A Nose Inlet Assembly

The ply angle of the forward nose (-503) ring was checked and found to be of the RSRM design. The flow surface bondline gap between the -503 ring and the aft inlet (-504) ring was 0.20 inch. The flow surface bondline gap between the -503 ring and the nose cap was 0.05 inch. These post-fired measurements are typical of past static test and flight nozzles.

The forward nose (-503) and aft inlet (-504) rings showed smooth erosion with no pockets or wash areas observed. One postburn wedgeout was found on the forward 1.1 inches of the -504 ring at 40 degrees and measured 13.5 inches circumferentially by 0.45 inch radially. Popped-up charred CCP was also noted on the forward 1.2 inches at 15 degrees. Slag deposits were noted on the -503 ring. Impact marks, possibly due to loose debris, were located at 0, 185, and 245 degrees. The mark at 245 degrees was covered with slag.

The nose cap exhibited typical minor wash areas on the forward 24 inches (0.15 inch maximum radial depth). The aft 2-to-3 inches showed intermittent popped-up charred CCP material and typical postburn wedgeouts at 0-to-84, 110-to-248, 275-to-306, and 336-to-0 degrees from typical postburn wedgeouts. The maximum radial depth was 0.65 inch at the cowl interface. Sharp edges indicate the popped-up material and the wedgeouts occurred after motor operation. No wedgeouts were observed on the forward end of the nose cap.

DOC NO.	TWR-17544	VOL
SEC	PAGE	
		10

REVISION ____

10

Thickol CORPORATION

The aft end of the nose inlet assembly (-504 ring aft end) showed metal to adhesive bondline separations (0.01 inch maximum radial width) occurring intermittently around the circumference. Figure 20 lists the location and radial width measurements of all separations on the nose inlet assembly. These separations are typical observations seen on previous static test and flight nozzles and have been shown to occur postburn. No separations occurred at the aft end of the nose cap.

Photographs of the sectioned nose inlet assembly rings are presented in Figures 21 through 28. Char and erosion analysis of the sections is presented in Tables 4 and 5. All margins of safety were positive, with a minimum of 0.15 occurring at station 32 (270 degrees) for the -503/-504 rings, and 0.03 occurring at station 24 (90 degrees) for the nose cap. Figure 29 shows the nose inlet assembly erosion measurement stations.

STS-28A Cowl Ring

Closeup views are shown in Figures 30 through 33. All cowl vent holes appeared plugged with soot and slag on the OD of the ring except at 80, 90, 130, 180, 190, 200, 290, and 310 degrees. These remained partially open.

Typical ridged erosion was observed intermittently around the cowle circumference. The forward portion of the ring eroded a maximum of 0.15

DOC NO. TWR-17544 VOL

inch greater than on the aft portion of the ring. This is a result of the low ply angle of the cowl ring and has been observed on the majority of flight and static test nozzles. Postburn wedgeouts and popped-up CCP were observed on the aft 3-to-4 inches intermittently around the circumference.

There were no bondline separations on the forward end of the cowl ring.

Photographs of the sectioned cowl ring are presented in Figures 34 through 37.

Char and erosion analysis of the sections is presented in Table 6 (Stations 0 through 7). Figure 38 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.25 occurring at station 2 (0 degrees).

STS-28A Outer Boot Ring/Flex Boot

Closeup views are shown in Figures 30 through 33.

The bondline between the OBR and cowl ring remained intact with no indications of flow. The flow surface bondline gap was 0.20 inch and is typical of past static test and flight nozzles.

DOC NO. TWR-17544 VOL
SEC PAGE 12

The structural backup OBR was intact. The flow surfaces showed smooth erosion with no pockets or wedgeouts. Intermittently, minor wash areas extended from the cowl to the forward 1 inch of the OBR. Postburn, popped-up charred CCP was found on the forward 2 inches intermittently. The OBR aft end showed typical delaminations along the charred CCP plies. The aft tip adjacent to the flex boot was fractured and wedged out intermittently around the circumference. Sharp edges on the surfaces indicate this occurred after motor operation.

Photographs of the sectioned OBR are presented in Figures 39 through 42. Char and erosion analysis of the sections is presented in Table 6 (Stations 8 through 12). All margins of safety were positive, with a minimum of 0.48 occurring at station 11.3 (45 degrees).

The flex boot remained attached to the outer boot ring 360 degrees circumferentially. The cavity side of the flex boot was evenly sooted and showed no evidence of flow or erosion (Figures 43 through 45). It appeared typical of previous flight and static test motor flex boots. A minimum of 3.25 NBR plies remained around the circumference after motor burn. Table 7 presents the flex boot material affected depths and Performance Margins of Safety (PMS). The worst-case PMS was 0.26 at 270 and 315 degrees.

DOC NO. TWR-17544 | VOL | SEC | PAGE | 13

STS-28A Fixed Housing

The fixed housing insulation erosion was smooth and uniform (see Figures 5 and 6). Postburn wedgeouts of charred CCP material were observed on the forward 2 inches intermittently around the circumference. radial depth of these wedgeouts was 0.5 inch. There was no heat effect to the GCP.

Separations were observed on the aft end of the fixed housing between the metal and EA913 NA adhesive at 227 degrees, between the adhesive and GCP at 235 degrees, and within the adhesive at 110 and 230 degrees. separations measured 0.005 inch radially.

The fixed housing aft flange showed no damage to the metal surfaces, bolt holes, or 0-ring grooves. No corrosion of the flange surface was observed, A residue of white except for minor surface rust on the alignment pin. Teflon tape adhesive was found on the steel flange next to the EA913 NA bondline.

Photographs of the sectioned fixed housing assembly liner are presented in Figures 46 through 49. Char and erosion analyses of the sections are presented in Table 8. Figure 50 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.52 occurring at station 3 (90 degrees).

STS-28A Bearing Protector

The bearing protector was sooted along the entire length and circumference (Figures 51 through 53). Slightly heavier soot and erosion were observed in line with the cowl ring vent holes at the thickened portion, but there was no bearing protector burn-through. The largest erosion was 0.162 inch at 90 degrees. There was no evidence of heat effect on the Inside Diameter (ID) surface of the bearing protector.

STS-28A Flex Bearing

Examination of the flex bearing revealed no damage, soot, heat effect, or flow indications (see Figures 54 and 55). All rubber pads, metal shims, and end rings appeared to be in nominal condition. Subsequent refurbishment and testing has verified that the flex bearing is acceptable for reuse.

DOC NO. TWR-17544 VOL

Thickol CORPORATION

4.1.2 STS-28A Nozzle Internal Joints

Descriptions of the STS-28A nozzle internal joints follows.

STS-28A Aft Exit Cone-to-Forward Exit Cone (Joint No. 1)

A cross-sectioned view of the STS-28A aft exit cone-to-forward exit cone field joint is presented in Figure 56. Photographs of the postflight joint are shown in Figures 57 through 62.

The backfilled RTV extended below the joint char line circumferentially 360 degrees. The backfill also reached the high pressure side of primary 0-ring from 140-to-150, 180-to-190, and 220-to-0 degrees. primary 0-ring did not see pressure.

Examination of the joint showed a foreign powdery residue (see Figure 63) appearing between 265 and 271 degrees, and a small pin-hole (0.10 inch inboard of housing) at 268 degrees was found on the surface of the aft exit cone polysulfide filled groove between the primary and secondary 0-ring groove. This residue was determined to be silica and silicon with traces of salt.

> DOC NO 16

REVISION

The aft flange of the forward exit cone was scratched at the 91.8-degree location by a guide pin during aft exit cone demate. The scratch was approximately 0.002 inch deep axially, 0.25 inch long circumferentially and 0.02 inch wide radially.

STS-28A Throat-to-Forward Exit Cone (Joint No. 4)

A cross-sectioned view of the STS-28A throat-to-forward exit cone joint is presented in Figure 64. Photographs of the postflight joint are shown in Figures 65 through 70.

The RTV backfill extended below the joint char line and reached to the chamfer 360 degrees circumferentially. RTV reached the high pressure side of the primary 0-ring from 287-to-318 degrees. There were no blowpaths in the joint.

Minor corrosion and pitting were observed on the forward end of the forward exit cone at the adhesive/metal interface intermittently around the circumference. There was no metal damage observed.

Intermittent light surface rust was observed on the aft end of the throat support housing at the adhesive/metal interface. Rust stains were also found on the CCP and GCP from 30-to-43 degrees. There was no pitting observed on the metal surfaces.

DOC NO. TWR-17544 VOL

STS-28A Nose Inlet-to-Throat (Joint No. 3)

A cross-sectioned view of the STS-28A nose inlet/throat joint is presented in Figure 71. Photographs of the postflight joint are shown in Figures 72 through 77.

The RTV backfill extended below the joint char line 360 degrees circumferentially. RTV completely filled the radial ID portion of the joint circumferentially except at 288 degrees. RTV did not reach the high pressure side of the primary 0-ring. The primary 0-ring did not see pressure.

Aluminum oxide corrosion was observed on the aft end of the aluminum nose inlet housing inboard of the primary 0-ring around 75 percent of the circumference, but no pitting was observed. There was no corrosion on the forward end of the steel throat support housing. No metal damage was observed.

STS-28A Nose Inlet-to-Bearing Forward End Ring-to-Cowl (Joint No. 2)

A cross-sectioned view of the STS-28A nose inlet/forward end ring/cowl joint is presented in Figure 78. Photographs of the postflight joint are shown in Figures 79 through 87.

DOC NO. TWR-17544 VOL

SEC PAGE
18

The RTV extended below the joint char line 360 degrees circumferentially and reached the axial portion of the joint approximately 80 percent circumferentially. The radial bondline between the nose cap and cowl showed RTV mixed with the EA913 NA adhesive 360 degrees circumferentially. The adhesive was typically sandwiched between two layers of RTV. There was no RTV extending to the primary 0-ring. One blow path was observed at 318 degrees (see Figure 88), but terminated within the RTV. Soot was observed between the adhesive and RTV 360 degrees circumferentially. Sooting also extended onto the nose inlet housing aft end from 282-to-0-to-54 degrees and reached the primary 0-ring from 282-to-342 degrees. Sooting at 324-to-336 degrees was found on the OD of the O-ring groove. The primary O-ring saw pressure, but there was no evidence of blowby, erosion, or heat No soot was observed between the aft face of the forward end ring effect. flange and the forward face of the cowl housing, but these surfaces were wet.

Minor corrosion was observed on the aluminum nose inlet housing surface, but no rust was noted on the forward end ring flange. Minor corrosion was found on the aluminum cowl housing intermittently around the circumference, but no pitting was observed. There was no damage found on the metal surfaces.

> TWR-17544 | VOL DOC NO. SEC

STS-28A Fixed Housing-to-Bearing Aft End Ring (Joint No. 5)

A cross-sectioned view of the STS-28A aft end ring/fixed housing joint is presented in Figure 89. Photographs of the postflight joint are shown in Figures 90 through 95.

RTV filled the radial gap between the bearing protector and inner boot ring 360 degrees circumferentially and filled approximately 50 percent of the axial portion of the joint. RTV reached the high-pressure side of the primary 0-ring at 10-to-20 and 120-to-125 degrees. There were no blowpaths observed in the joint.

Heavy rust was found on the aft end ring aft tip on approximately 50 percent of the surface. No pitting was observed. Rust stains were also observed on the axial portion of the fixed housing. No metal damage was found.

4.2 STS-28A RH Nozzle/Flex Bearing

Overall erosion of the STS-28B forward nozzle assembly CCP ablative liners was smooth and uniform. All CCP delaminations, wedgeouts, and pop-ups were determined to be postburn occurrences. Soot was observed in Joint 2 up to the primary 0-ring, but there was no blowby, erosion, or heat effect to the primary 0-ring.

DOC NO. TWR-17544 VOL

REVISION ____

postflight subassembly flow surface gaps are shown in Figure 96. Overall views of the nozzle are shown in Figures 97 through 100.

4.2.1 STS-28B Nozzle Components

STS-28B Aft Exit Cone Assembly

An overall view of the STS-28B aft exit cone fragment is shown in Figure 101.

The aft exit cone was severed aft of the compliance ring by the LSC. The nozzle severance system performance was nominal. The exit cone cut was clean, with no unusual tearing or breaking. The remaining aft exit cone fragment showed missing CCP liner 360 degrees circumferentially. This is a typical postflight observation and occurs at LSC firing and during splashdown. GCP plies exposed by the missing liner showed no signs of heat effect. Missing GCP plies on the aft 6 inches of the exit cone stub exposed six small air voids in the EA946 bondline. The maximum size of the voids was approximately 4 inches axially by 2 inches circumferentially. These voids have been observed on previous postflight exit cones and are inherent to the aft exit cone bonding process.

DOC NO. TWR-17544 | VOL | PAGE | 21

There were no separations between the polysulfide and the aft exit cone shell observed. postflight measurements of the polysulfide groove radial width (see Table 9) showed that the GCP insulator did not pull away from the aluminum shell during cool-down. The average postflight radial width of the polysulfide groove was 0.18 inch. The polysulfide appeared to have shrunk axially aft up to 0.08 inch. There were no loose layers of polysulfide observed in the groove.

There were no separations observed within the GCP insulator on the forward end.

STS-28B Forward Exit Cone Assembly

The forward exit cone showed missing CCP liner over the center 15 inches of the cone 360 degrees circumferentially. This is a typical postflight observation and occurs at splashdown and during Diver Operated Plug (DOP) insertion. The GCP insulator exposed by the missing liner showed no signs of heat effect. Postburn wedgeouts of charred CCP were observed on the forward 0.8 inch of the intact CCP liner at 0 and 340 degrees. These wedgeouts measured 11 and 12 inches long circumferentially, respectively,

DOC NO. TWR-17544 VOL SEC PAGE 22

and approximately 0.7 inch deep radially. Typical dimpled erosion was observed on the intact liner aft 10 inches and measured approximately 0.1 inch deep radially.

The aft end of the forward exit cone showed bondline separations between and steel housing intermittently around the EA946 adhesive the The maximum radial width of the separations was 0.02 inch. circumference. Bondline separations on the forward end of the forward exit cone were noted EA946 adhesive 360 steel shell and the between the Figure 102 lists the location and radial width circumferentially. measurements of all separations on the forward exit cone. These are typical observations which occur postburn.

Photographs of the sectioned forward exit cone liner are presented in Figures 103 through 105. Char and erosion analysis of the sections is presented in Table 10. All margins of safety were positive, with a minimum of 0.04 occurring at station 28 (90 degrees).

STS-28B Throat Assembly

The throat postflight mean diameter was 55.965 inches (erosion rate of 8.71 mils/second based on an action time of 120.8 seconds). RSRM nozzle postburn throat diameters have ranged from 55.787 to 56.048 inches. The

DOC NO. TWR-17544 | VOL SEC PAGE

flow surface bondline gap between the throat and throat inlet rings was 0.18 inch and is typical of past static test and flight nozzles.

The throat and throat inlet rings eroded smoothly with no pockets or major washes observed. The forward 1.3 inches of the throat ring showed popped-up charred CCP material intermittently around the circumference. Sharp edges indicate the popped-up material occurred after motor operation. Intermittent postburn impact marks were noted on the throat ring. Marks resulting from DOP insertion were observed on the throat ring intermittently around the circumference.

Bondline separations on the aft end of the throat ring between the EA913 NA adhesive and the steel throat support housing were observed 360 degrees circumferentially with a radial separation of 0.035 inch. The forward end of the throat inlet ring showed metal-to-adhesive bondline separations at 0-to-105, 120-to-210, and 225-to-345 degrees, with 0.02 inch maximum radial separation. Figure 106 lists the location and radial width of the measurements. These separations are typical observations seen on previous test and flight nozzles and occur postburn.

Photographs of the sectioned throat assembly liner are presented in Figures 107 through 110. Char and erosion analysis of the sections is presented in Table 11. All margins of safety were positive, with a minimum of 0.05 occurring at station 8 (90 and 180 degrees).

DOC NO. TWR-17544 VOL SEC PAGE 24

STS-28B Nose Inlet Assembly

The ply angle of the forward nose ring was checked and found to be of the RSRM design. The flow surface bondline gap between the forward nose (-503) ring and the aft inlet (-504) ring was 0.18 inch. The flow surface bondline gap between the -503 ring and nose cap was 0.05 inch. These postfired measurements are typical of past static test and flight nozzles.

The -503 and -504 rings showed smooth erosion with no pockets or major washes observed. Intermittent small wash areas (maximum radial depth of 0.10 inch) were observed on the -503 forward nose ring.

The nose cap exhibited typical minor wash areas on the forward 24 inches 360 degrees circumferentially (0.15 maximum radial depth). The aft 2-to-3 inches of the nose cap showed typical popped-up, charred CCP liner and postburn wedgeouts intermittently around the circumference. These measured approximately 0.7 inch deep radially at the cowl interface.

The aft end of the nose inlet assembly (-504 ring aft end) showed metal-to-adhesive bondline separations measuring 0.01 inch wide radially from 45-to-270 degrees. There were no bondline separations observed on the aft end of the nose cap. Figure 111 lists the location and radial width

DOC NO. TWR-17544 | VOL SEC | PAGE 25

measurements of all separations on the nose inlet assembly. These separations are typical observations seen on previous static test and flight nozzles and occur postburn.

Photographs of the sectioned nose inlet assembly rings are presented in Figures 112 through 119. Char and erosion analyses of the sections are presented in Tables 12 and 13. All margins of safety were positive, with a minimum of 0.19 occurring at station 39 (90 and 180 degrees) for the -503/-504 rings, and 0.04 occurring at station 24 (270 degrees) for the nose cap.

STS-28B Cowl Ring

All cowl vent holes appeared plugged with soot and slag on the OD of the ring except at 50, 80, and 110 degrees. These unplugged cowl vent holes were located at wedgeout locations.

The cowl ring showed typical ridged erosion intermittently around the part circumference. The forward portion of the ring eroded a maximum of 0.15 inch greater than the aft portion. This is a result of the low ply angle of the cowl ring and has been observed on the majority of flight and static test nozzles. Wedgeouts and popped-up charred CCP liner were observed on the aft 2 inches of the cowl ring intermittently around the circumference.

DOC NO. TWR-17544 VOL

REVISION ___

The maximum radial depth of the wedgeout was 0.7 inch at the outer boot ring interface.

There were no bondline separations on the forward end of the cowl ring.

Photographs of the sectioned cowl ring are presented in Figures 120 through 123. Char and erosion analysis of the sections is presented in Table 14 (Stations O through 7). All margins of safety were positive, with a minimum of 0.22 occurring at station 2 (270 degrees).

STS-28B Outer Boot Ring/Flex Boot

The bondline between the outer boot ring and cowl ring remained intact with no indications of flow. The flow surface bondline gap was 0.20 inch and is typical of past static test and flight nozzles.

The structural backup outer boot ring was intact. The flow surfaces showed smooth erosion with no pockets or major washes. One postburn wedgeout of charred CCP material was observed on the OBR forward 1.5 inches at 172 degrees. The wedgeout measured 3.8 inches circumferentially, with a maximum radial depth of 0.35 inch. Delaminations of charred CCP along the 35-degree plies were observed on the flow surface. Typical wedgeouts or charred CCP were also found on the aft tip adjacent to the flex boot.

DOC NO. TWR-17544 VOL SEC PAGE 27

Photographs of the sectioned outer boot ring are presented in Figures 124 through 127. Char and erosion analysis of the sections is presented in Table 14 (Stations 8 through 11.3). All margins of safety were positive, with a minimum of 0.07 occurring at station 9 (90 degrees).

The cavity side of the flex boot was evenly sooted and showed no evidence of flow or erosion (Figures 128 through 130). It appeared typical of previous flight and static test motor flex boots. A minimum of 3.25 NBR plies remained around the circumference after motor burn. Table 15 presents the flex boot material affected depths and Performance Margins of Safety. The worst-case PMS was 0.26 at 270 degrees.

STS-28B Fixed Housing Assembly

The fixed housing insulation showed smooth erosion with no pockets or major washing observed. Postburn wedgeouts of charred CCP material were observed on the forward 2.0 inches of the fixed housing insulation intermittently around the circumference. The wedgeouts were a maximum of 0.5 inch deep radially. There was no heat effect to the GCP.

There were no bondline separations observed on the forward end or aft end.

DOC NO. TWR-17544 | VOL SEC PAGE 28

Photographs of the sectioned fixed housing assembly liner are presented in Figures 131 through 134. Char and erosion analysis of the sections is presented in Table 16. All margins of safety were positive, with a minimum of 0.27 occurring at station 10.75 (90 degrees).

STS-28B Bearing Protector

The bearing protector was sooted along the entire length and circumference (see Figures 135 through 137). Heavier soot and erosion were observed in line with the cowl ring vent holes at the thickened portion of the bearing protector. The greatest erosion was 0.06 inch at 40 degrees. There was no evidence of heat effect on the ID surface of the bearing protector.

STS-28B Flex Bearing

ME

Visual examination of the flex bearing revealed no damage, soot, heat effect, or flow indications (see Figures 138 and 139). All rubber pads, metal shims, and end rings appeared to be in nominal condition. Subsequent testing has shown an unacceptable unbond area. This was written up on DR 165119. Acceptance tests have not been completed.

DOC NO. TWR-17544 VOL SEC PAGE 29

4.2.2 STS-28B Nozzle Internal Joints

Descriptions of the STS-28 nozzle internal joints follow.

STS-28B Aft Exit Cone-to-Forward Exit Cone (Joint No. 1)

A cross-sectioned view of the STS-28B aft exit cone-to-forward exit cone field joint is presented in Figure 140. Photographs of the postflight joint are shown in Figures 141 through 146.

The backfilled RTV extended below the joint char line 360 degrees circumferentially. The RTV backfill extended to the high pressure side of the primary 0-ring from 0-to-8, 63-to-67, 78-to-86, 97-to-120, 288-to-292, and 300-to-322 degrees. There were no blowpaths observed in the joint, and the primary 0-ring saw no pressure.

Light aluminum oxide corrosion was observed on the aft exit cone forward end between the primary and secondary 0-ring grooves intermittently around the circumference. Heavier corrosion was observed on the forward OD corner of the aft exit cone shell intermittently around the circumference. Pitting was observed at these locations, but it could not be determined if the pitting resulted from this or previous flights. Light rust was also observed on the forward exit cone aft end between the 0-ring footprints, intermittently around the circumference.

DOC NO. TWR-17544 VOL
SEC PAGE 30

REVISION ___

Minor displaced metal was observed on the forward exit cone at the 91.8-degree alignment pin-hole due to disassembly contact with the alignment pin (see Figure 147). The displaced metal measured approximately 0.01 inch axially by 0.01 inch circumferentially by 0.28 inch radially.

STS-28B Throat-to-Forward Exit Cone (Joint No. 4)

A cross-sectioned view of the STS-28 throat-to-forward exit cone joint is presented in Figure 148. Photographs of the postflight joint are shown in Figures 149 through 154.

The RTV backfill extended below the joint char line 360 degrees circumferentially and extended on to the radial OD portion of the joint at 0-to-165, 172-to-200, and 308-to-0 degrees. RTV extended on to the axial portion of the bondline from 200-to-235 degrees and 263-to-308 degrees. RTV did not reach the high-pressure side of the primary 0-ring. The primary 0-ring saw no pressure or evidence of blowby, erosion, or heat effect. The GCP also showed no signs of heat effect.

Rust was observed on the throat housing at the adhesive/metal interface 360 degrees circumferentially, but there was no pitting. Grease coverage was nominal. There was no metal damage observed.

DOC NO. TWR-17544 VOL

STS-28B Nose Inlet-to-Throat (Joint No. 3)

A cross-sectioned view of the STS-28 nose inlet-to-throat joint is presented in Figure 155. Photographs of the postflight joint are shown in Figures 156 through 161.

RTV backfill extended below the joint char line 360 degrees The circumferentially. RTV did not reach the high pressure side of the primary RTV also extended onto the axial portion of the joint on 0-ring. approximately 50 percent of the circumference. The primary 0-ring did not see pressure.

Minor surface corrosion was observed on the aft end of the nose inlet housing inboard of the primary 0-ring, but no pitting was observed. There was no corrosion on the forward end of the throat housing.

Inspection of the radial OD portion of the joint showed a wet, black substance measuring approximately 2 inches circumferentially by 0.5 inch radially by 0.04 inch thick axially at 203 degrees (see Figure 162). This substance was located on the radial OD phenolic surfaces of the joint immediately behind the RTV backfill. Upon removal from the surface, it The substance appeared fibrous. apart into a powdery form. broke

In addition, there were no apparent blowpaths in the joint and no signs of heat affected phenolics or RTV in the immediate area of the substance.

DOC NO

Analysis shows the presence of Silicon (Si) - 49 percent, Aluminum (Al) -17 percent, Magnesium (Mg) - 13 percent (probably from sea water), and Iron (Fe) - 8 percent. Carbon, Hydrogen, Nitrogen (C,H,N) tests were also performed on the samples. The results show 43 percent C, 0.5 percent N, and 1.3 percent H. This material was determined to be a mixture of charred RTV and CCP materials mixed with sea water. This was introduced into the joint during splashdown.

STS-28B Nose Inlet-to-Bearing Forward End Ring-to-Cowl (Joint No. 2)

A cross-sectioned view of the STS-28 nose inlet-to-bearing forward ring-to-cowl joint is presented in Figure 163. Photographs of postflight joint are shown in Figures 164 through 172.

The RTV extended below the joint char line and reached to the axial portion of the joint (forward end ring flange) 360 degrees circumferentially. The radial bondline between the nose cap and cowl showed RTV mixed with the The adhesive was NA adhesive 360 degrees circumferentially. EA913 typically sandwiched between two layers of RTV. No RTV extended to the primary 0-ring. Soot entered the joint 360 degrees circumferentially and extended past the nose inlet housing bolt holes, but no distinct blowpaths adhesive and RTV observed between the observed. Soot was were intermittently around the circumference. Heavy soot also reached the

DOC NO.	TWR-17544 vol	
SEC	PAGE	
		33

primary 0-ring at 18-to-38, 68 to-84, 162-to-176, 195, 207, 228-to-234, 250-to-258, 264-to-267, 270-to-281, 283-to-288, and 305 degrees. Heavy sooting was from 270-to-0-to-30 degrees and was found on the RTV surface up to the forward end ring flange. The cowl and nose cap SCP and GCP insulators showed no heat effect. The primary 0-ring saw pressure, but there was no evidence of blowby, erosion, or heat effect. No soot was observed between the aft face of the forward end ring flange and the forward face of the cowl housing.

Intermittent light corrosion on the aft end of the nose inlet housing adjacent to the bondline was observed. Minor intermittent corrosion was also found on the aluminum cowl housing forward end, but pitting was not present. Intermittent light rust was observed on the flange forward surface of the bearing forward end ring. Paint was also chipped off the OD surface. There was no damage found on the metal surfaces.

STS-28B Fixed Housing-to-Bearing Aft End Ring (Joint No. 5)

A cross-sectioned view of the STS-28B fixed housing-to-bearing aft end ring joint is presented in Figure 173. Photographs of the postflight joint are shown in Figures 174 through 179.

RTV filled the radial portion of the joint 360 degrees circumferentially and reached the high pressure side of the primary 0-ring around 80 percent of the circumference. Voids isolated within the RTV were observed on the

DOC NO. TWR-17544 VOL.

radial portion of the joint intermittently around the circumference, but none reached the flex boot cavity. There were no blowpaths observed in the joint, and the primary 0-ring did not see pressure.

Heavy rust was found on the aft end ring aft tip where paint was chipped off intermittently around the circumference. Minor rust stains were also observed on the axial OD and ID portions of the fixed housing. No metal damage was found.

4.3 Instrumentation

There was no Development Flight Instrumentation installed on the STS-28 nozzles.

DOC NO. TWR-17544 VOL SEC PAGE 35

5.0 DISCREPANCY REPORTS AND PROCESS DEPARTURES

The STS-28 Nozzle DRs and PDs reviewed by the Morton Thiokol senior material review board are included in Appendix A. These were presented in the STS-28 RSRM Acceptance Review Level III (TWR-). Brief descriptions of the DRs and PDs, and correlations to postflight observations are discussed below.

5.1 STS-28A DRs and PDs

Forward Exit Cone
DR 161110-01, Waiver No.: RWW445

Two LDIs located in the carbon phenolic liner starting at the interface and running parallel to the ply direction. Postflight inspection of this part did not reveal any propagation of the LDIs.

Nozzle Flex Bearing Assembly
DR 169467-02, Waiver No.: None
-03,

Total unbond area of rubber pads exceeds requirements.

The flex bearing passed all of the acceptance tests and postflight refurbishment requirements.

DOC NO. TWR-17544 VOL SEC PAGE

REVISION ___

Outer Boot Ring, First Wrap
PD 169735-01, Waiver No.: None

Temperature was held at 220 \pm 10 °F for 113 minutes, 23 minutes over maximum allowable. Postflight inspection showed no abnormal erosion.

Outer Boot Ring, First Wrap PD 169735-02, Waiver No.: None

Temperature was reduced at an overall average rate of 0.689 °F/min. Anomalous cooldown lasted 15 minutes, followed by a 1-hour cooldown at an acceptable rate of 0.5 °F/min maximum.

Postflight inspection showed no abnormal erosion.

Aft Exit Cone Liner
DR 173080-01, Waiver No.: None
02,

LDIs within the GCP larger than 2.5 inches circumferential width, 1.9 inches longitudinal length, or 0.025 inch radial depth are unacceptable. Numerous LDIs exceed one or more of the above dimensions on aft exit cone liner.

Postflight inspection of this part was not possible.

TWR-17544 VOL	
PAGE	37

Aft Exit Cone Assembly
DR 173099-01, Waiver No.: None

LDIs within the GCP larger than 2.5 inches circumferential width, 1.9 inches longitudinal length, or 0.025 inch radial depth are unacceptable. Four LDIs exceed one or more of the above dimensions; all classified as ply-end conditions (longitudinal length < 0.200 inch).

Postflight inspection of this part was not possible.

Fixed Housing Assembly
DR 173448-01, Waiver No.: None

Blemish on CCP at 148 degrees (forward ID surface) checks 1.9 inches long, 0.225 inch wide, 0.045 inch deep.

Postflight inspection showed no abnormal erosion.

DR 173448-02

Numerous wetline indications on CCP forward ID.

Postflight inspection showed no abnormal erosion.

DOC NO. TWR-17544 VOL

Thickol CORPORATION

5.2 STS 28B DRs and PDs

Outer Boot Ring, First Wrap PD 169737-01, Waiver No.: None

Temperature was held at 220 \pm 10 °F for 113 minutes, 23 minutes over maximum allowable.

Postflight inspection showed no abnormal erosion.

Outer Boot Ring, First Wrap PD 169737-02, Waiver No.: None

Temperature was reduced at an overall average rate of 0.689 °F/min. Anomalous cooldown lasted 15 minutes, followed by a 1-hour cooldown at an acceptable rate of 0.5 °F/min maximum.

Postflight inspection showed no abnormal erosion.

Flex Bearing Assembly DR 169782-03, Waiver No.: None

Maximum unbond depth checks 3.4 inches on pad 3.

This flex bearing was written up on DR 165119 for unacceptable unbond area.

TWR-17544 | vol DOC NO. SEC

Aft Exit Cone Assembly DR 170806-01, Waiver No.: None

Two areas contain LDIs which exceed limits. Maximum dimensions of any single LDI are 3.78 inches circumferential width.

Postflight inspection of this part was not possible.

Aft Exit Cone Assembly DR 170806-02, Waiver No.: None

High Density Indication (HDI) with projected area of 0.0675 in. 2 (0.250 inch longitudinal by 0.270 inch circumferential) located in GCP, 36.14 inches forward of part aft end at 216 degrees. HDI runs parallel to glass ply direction.

Six other HDIs exist in general area of noted HDI. All six have projected areas less than 0.050 in.².

Postflight inspection of this part was not possible.

TWR-17544 | VOL DOC NO.

Nozzle Compliance Ring

DR 173430-01, Waiver No.: RWW451

Nonlocking helicoil inserts were installed into the compliance ring.

Note: Flight 5A and Flight 6 and subsequent compliance rings have locking helicoil inserts installed.

Postflight inspection did not reveal any flight-related problems with the helicoil inserts.

DOC NO. TWR-17544 | VOL

NOZZLE COMPONENT PROGRAM TEAM (NCPT) RECOMMENDATIONS AND REDESIGN PROGRAM REVIEW BOARD (RPRB) ASSESSMENT

The NCPT reviewed all observations documented in this report. The team classified two Problem Reports (written at KSC) as minor anomalies. After internal nozzle joint inspections at Clearfield, the team initially classified one observation as a potential anomaly. This was further classified as a minor anomaly. These were presented to the RPRB on 06 September 1989. The RPRB agreed with the classifications. These minor anomalies were recorded on Postfire Anomaly Record (PFAR) forms and are included in Appendix B. The PFARs contain detailed descriptions and corrective actions as accepted and/or modified by the RPRB. A listing of the PFARs is listed below.

6.1 STS-28A Nozzle

PFAR NUMBER	DESCRIPTION
360н005А-03	Foreign residue and a small pin hole found on aft exit cone polysulfide groove fill.
360н005а-08	White, sticky material on fixed housing (aft end) forward of the primary 0-ring at the EA913NA interface.

6.2 STS-28B Nozzle

360H005B-13 Black, powdery residue found in Joint 3.

DOC NO.	TWR-17544	VOL
SEC	PAGE	
	l	42

43

SEC

REVISION _

Figure 3 STS-28B Nozzle Material

DOC NO. TWR-17544

| | '

PAGE 45

Figure 4 STS-28A Post-Flight Joint Flow Surface Gap Openings

REVISION	DOC NO. $ ext{TV}$	VR-17544	VOL
	SEC	PAGE /	.6

ORIGINAL PAGE Thickol CORPORATION SPACE OPERATIONS BLACK AND WHITE PHOTOGRAPH

STS-28A Forward Nozzle Assy (External) 0-to-90-to-180 degrees S

STS-28A Forward Nozzle Assy (External) 180-to-270-to-0 degrees

DOC NO. TWR-17544

SEC

48

ORIGINAL PAGE Thickol CORPORATION BLACK AND WHITE PHOTOGRAPH

DOC NO. TWR-17544 SEC

Table 1 STS-28A Aft Exit Cone Post-Flight Polysulfide Groove Radial Widths

 DOC NO.
 TWR-17544
 VOL

 SEC
 PAGE
 50

REVISION

A STATE OF THE STA

Forward End			
Location (deg)	Radial Separation (in.)	Separation Type	
0-110	0.010	Metal/Adhesive	
120	0.030	Metal/Adhesive	
140	0.040	Metal/Adhesive	
150-300	0.010	Metal/Adhesive	
340-0	0.010	Metal/Adhesive	
135-150	0.020	Cohesive	
0-5	0.015	Glass to Glass	
340	0.003	Glass to Glass	
345	0.010	Glass to Glass	

Figure 8. STS-28A Forward Exit Cone Bondline Separations

REVISION ____

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

gure 9 STS-28A Forward Exit Cone Liner Section (0 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL SEC PAGE 52

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-28A Forward Exit Cone Liner Section (90 deg)

ORIGINAL PAGE IS OF POOR QUALITY

REVISION

DOC NO. TWR-17544 SEC PAGE

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

igure 11 STS-28A Forward Exit Cone Liner Section (180 deg)

ORIGINAL PAGE IS OF POOR QUALITY

 DOC NO.
 TWR-17544
 VOL

 SEC
 PAGE 54

REVISION ____

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

igure 12 STS-28A Forward Exit Cone Liner Section (270 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 | VOL SEC PAGE 55

14

1						Stat	Stations				
Sured Erosion 0.36 0.05 0.076 0.09 0.076 0.09 0.070 0.09 0.010 0.09 0.010 0.09 0.00		ત	4	60	12		20		28	3.2	3.4
### State St											
Sured Chart 1.55.C 1.61 1.62 1.6	Measured Erosion	35.0	0	Š	ŝ	;	į	í	,		
The color of the			n r	£ ;	4	Y :	A N	NA	NA	NA	NA
### ### ### ### ### ### ### ### ### ##	77 77 77 77 77 77 77 77 77 77 77 77 77	h 10	• •	V I	Y :	N N	X X	K Z	K N	NA	NA
######################################	Adjusted Chal.	00.7	•	Y Y	Y Y	A'N	NA	ΑN	NA	NA	NA
degrees sured Erosion 0.28 0.27 NA NA NA NA NA NA NA NA NA N	1	1.41	•		AN.	A N		NA	NA	NA	NA
Sured Erosion 9.38	ν) 10	1.80/ 0.28		1.629 NA	1.524 NA	. 42 NA	LO.	1.322 NA	1.328 NA	1.372 NA	1.40 NA
Sured Erosion 0.38 0.35 0.35 0.39 0.48 0.47 0.47 0.47 0.49 0.40 0.4	90 degrees										
Sured Erosion 0.32 0.32 0.34 0.35 0.37 0.37 0.38 0.39 0.39 0.39 0.39 0.47 0.48 0.47 0.47 0.47 0.47 0.47 0.49 0.47 0.49 0.47 0.49 0.40 0.4	Measured Erosion	~	سن	رد د	2		Ş	i	į	;	
usted Chart + 1.25AC H Min Liner Thickness 1.36 1.29 1.23 NA	Meanured Crar	. 4) u		4	4 :	¢ ;	ć z	S S	NA	NA
## Min Liner Thickness 1.807 1.731 1.529 1.524 1.426 1.356 1.322 1.322 1.323 dgin of Safety 0.33 0.34 0.32 NA	Adjusted Char*	. 4	h r	•	4 2	Y Y	K :	K N	Ą.	NA	Z Z
# Win Liner Thickness 1:807 1:72 1:529 1.524 1.426 1.356 1.322 1.322 1.329	2E + 1.25AC		, c	•	Š	¥ ;	Y :	K Z	Y.	N A	Z
gin of Safety 0.33 0.34 0.32 NA NA NA NA NA NA degrees Sured Erosion 0.32 0.32 0.32 0.32 NA NA NA NA NA sured Erosion 0.32 0.32 0.32 NA NA NA NA NA sured Erosion 0.34 0.32 0.32 0.37 0.37 0.37 0.37 0.37 0.38 0.31 0.32 0.31 0.31 0.23 0.31 0.32 0.31 0.32 0.33 0.34 NA NA NA NA NA degrees Sured Erosion 0.32 0.33 0.34 NA NA NA NA NA sured Char 0.32 0.33 0.34 NA NA NA NA NA degrees 0.31 0.25 0.47 NA NA NA NA sured Char 0.57 0.52 0.47 NA NA NA NA th 1.25AC 1.35 1.31 1.32 1.32 1.32 1.32 1.32 th 1.25AC 1.35 0.32 0.32 0.34 0.32 0.34 </td <td>U</td> <td>1.807</td> <td></td> <td>1.23</td> <td></td> <td>•</td> <td>MA 1 256</td> <td></td> <td>,</td> <td>NA.</td> <td>Y X</td>	U	1.807		1.23		•	MA 1 256		,	NA.	Y X
degrees Sured Erosion G.32 G.32 G.32 G.32 G.32 G.34 H. 1.25AC H. 1.25AC Sured Erosion G.32 G.31 G.33 G.31 G.33 G.31 G.33 G.34 H. 1.25AC H. 1.35C H. 1.		0 33	•	, , ,))	4	D	775.7	•	1.3/2	1.408
degrees Sured Erosion 0.32 0.32 0.32 0.32 0.4 0.77 0.71 0.74 0.77 0.71 0.74 0.77 0.71 0.74 0.77 0.71 0.74 0.77 0.71 0.74 0.77 0.71 0.77 0.71 0.74 0.77 0.71 0.74 0.77 0.				7	Ý.	¥ z	Y.	ď Z	K Z	NA	4 N
Sured Erosion 0.32 0.32 0.32 NA	180 degrees										
Sured Char sured Char 1.38	Measured Erosion	0.32	0.32	0.32	X.	ď.	A M	ä	ź	Ş	;
usted Char* 1.38	Measured Char	•		ί.	¥	Z	¥ X	4	. 2	C 2	5 2
+ 1.25AC 1.38	Adjusted Char*	0.59		S	A Y	NA	. A	(a	(a	\$ # E #	¥ 2
M Min Liner Thickness 1.307 1.731 1.629 1.524 1.426 1.356 1.322 1.32 1.32 din of Safety 0.31 0.23 0.21 NA	2E + 1.25AC	1.38	1.41	۳.	M.	NA.	ď	1 2	; a	Ç	4 5
gin of Safety 0.31 0.23 0.21 NA	U	1.307	1.731		1.524	~	v	1.322	-	1 177	4 -
degrees sured Erosion 0.32 0.33 0.34 NA	Safety	0.31	0.23		NA	NA	NA A	NA	,	NA	Y N
degrees sured Erosion 0.32 0.34 NA											
Sured Erosion 0.32 0.33 0.34 NA	270 degrees										
Sured Char 0.71 0.65 0.59 NA	Measured Erosion	•	0.33	0.34	×	N.	Z.	ž	2		;
usted Char* 0.57 0.52 0.47 NA	Measured Char	٠	0.65	Ś	MA	Z	4	. 4	(<u> </u>	¢ :	4 ;
+ 1.25AC 1.35 1.31 1.27 NA	'Adjusted Char'	•	0.52	4	N.	N N	A.N	: d	Y N	¢	£ ;
M Min Liner Thickness 1.807 1.731 1.629 1.524 1.426 1.356 1.322 1.32 gin of Sačety 0.34 0.32 0.28 NA NA NA NA NA	2E + 1.25AC	1.35	1.31	~	N.	A.	A N	; 4 Z	(a	C /2	¢ :
gin of Safety 0.34 0.32 0.28 NA NA NA NA NA NA	S	1.807	1.731	٠,	N	1.426	1.356	1 323	-	נרי ו	¥ ,
	Margin of Sarety	0.34	Ψ.	7	K N	NA	N.	N.V.	,	7 . A. N.	* 4 * 2

DOC NO. TWR-17544 VOL SEC PAGE 56

ninimum liner thickness
2 X erosion + 1.25 X adj char*

Margin of Safety ==

DOC NO. TWR-17544

VOL

57

PAGE

• • • •	d End
	-Adhesive Separations
Bondine	Radial
Location	Separation
<u>(deg)</u>	(in.)
0	0.010
15	0.020
30	0.030
45	0.020
60	0.010
120	0.010
135	0.020
150	0.010
195-210	0.010
225	0.020
240-255	0.010
345	0.010

	Metal-to	End -Adhesive Separations
		Radial
	Location	Separation
	(deg)	(in.)
Circ	360 umferentia	0.040 ally

Figure 14 STS-28A Throat Assembly Bondline Separations

REVISION	DOC NO. TWR-17544	VOL
	SEC	PAGE 58

Thickol CORPORATION SPACE OPERATIONS

igure 15 STS-28A Throat/Throat Inlet Section (0 deg)

ORIGINAL FACE IS OF POOR QUALITY

OF POUR QUALITY

DOC NO. TWR-17544

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 16 STS-28A Throat/Throat Inlet Section (90 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544

VOL

SEC

PAGE 60

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL FACE IS OF POOR QUALITY

DOC NO. TWR-17544 | VOL SEC | PAGE | 61

REVISION _

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544	161	VOL
SEC	PAGE	52

REVISION ___

Thickol CORPORATION
SPACE OPERATIONS

-

e 3 STS-28A Throat Assembly Erosion and Char Data	Stations	4 6 8 10 12 14 16 18 20 22 23	1.21 1.25 1.19 1.17 1.17 0.90 0.68 0.45 0.	0.03 0.35 0.36 0.64 0.65 0.71 0.72 0.79 0.8	3.01 3.00 2.91 2.87 2.91 2.75 2.47 2.04 1.64 1.5	3.314 3.280 3.183 3.397 3.517 3.626 3.710 3.586 2.231 2.583 2.11. 0.11 0.09 0.06 0.17 0.23 0.25 0.35 0.45 0.10 0.57 0.36		1.19 1.32 1.15 1.13 1.09 1.05 0.87 0.68 0.44 0.4	0.63 0.49 0.58 0.55 0.54 0.53 0.60 0.70 0.87 0.	0.53 0.47 0.37 0.44 0.41 0.41 0.40 0.45 0.53 0.65 0.6;	2.97 3.10 2.84 2.78 2.69 2.60 2.30 2.02 1.70 1.6	3.280 3.183 3.397 3.517 3.626 3.710 3.586 2.231 2.583 2.1	0.10 0.03 0.19 0.27 0.35 0.43 0.56 0.11 0.52 0.3			1.31 1.16 1.13 1.11 1.04 0.88 0.67 0.42 0.3	0.47 0.59 0.53 0.54 0.53 0.61 0.68 0.80 0.8	NA 0.35 0.44 0.40 0.41 0.40 0.46 0.51 0.60 0.	NA 3.06 2.87 2.76 2.73 2.58 2.33 1.98 1.59 1.5	3.314 3.280 3.183 3.397 3.517 3.626 3.710 3.586 3.231 2.583 2.1 NA NA 0.04 0.18 0.28 0.33 0.44 0.54 0.63 0.62 0.3		13 1.18 1.24 1.20 1.17 1.12 1.05 0.89 0.68 0.42 0.3	.63 0.62 0.54 0.62 0.54 0.59 0.61 0.69 0.75 0.84 0.8	0.47 0.47 0.41 0.47 0.41 0.44 0.46 0.52 0.56 0.63 0.64	85 2.94 2.99 2.98 2.85 2.79 2.67 2.43 2.06 1.63 1.5	.314 3.280 3.183 3.397 3.517 3.626 3.710 3.586 3.231 2.583 2.1
			٦,	•	. 6	.62		0		4.	69.	.62	m.			Ξ.	٠,	7	. 73	.33		Η.	٠,	7.	. 79	. 0.7
	tation	12	4	Ů 4	. ∞	.51		-	. 5	7.	. 78	.51	7			٦,	.5	4	. 76	. 28		٦,	.5	₹.	œ, ۱	•
ssembly			٦, ۵	Ů. 4	. 6	.39		-	. 5	4	8.	.39	٦.	Ē		٦.	٠.	4	.87	. 19		7.	9.	4.	. 98	~
hroat As		80	.2	U 4	. 0	. 18		~	ा न ^म	۳.	. 10	87.	9			٣.	₹.	٣,	90.	. 0.4		7	.5	4	66.	~
'S-28A T		9	7,	0 4		.09		٦,	9.	4.	.97	. 58	ᅾ.	-		NA	N.	NA	AN.	8 7 N M A		٦.	9.	٠.	46.	
m		4	1.19		3.00	3.314		1.15	0.70	0.53	2.96	3.314	71.0			NA	NA	K N	AN.	3.514 NA		1.13	0.63	0.47	2.85	
Table		7	1.15	0.0	2.91	3.247		1.09	0.71	0.53	. 85	3.247	0.14			NA	ΑN	ΚN	AN ,	3 . 24 / NA		1.09	0.63	0.47	2.17	7.74
		-	1.11	28.0	2.80	3.174		1.08	0.64	8 * · 0	2.76	3 - 174	٠ .			KN	KN	KN	NA	3 . L /4 NA		1.10	0.59	77.0	۷/۰۷	5/1.5
REVISION	Angular Location	0 degrees	Measured Erosion		2E + 1.25AC	RSRM Min Liner Thickness Margin of Safety	90 degræes	Measured Erosion	Measured Char	Adjusted Char *	2E + 1.25AC	KSRM Min Liner Thickness	argin or sarety		180 degrees	Measured Erosion		djusted Char *	2E + 1.25AC	nska nin Liner inickness Margin of Safety	270 degrees	Measured Erosion	easured Char	Adjusted Char *	- 1	KAKM MIN LINET TAICKNESS

* Measured char adjusted to end of action time

TWR-17544

STS-28A Throat Inlet Assembly Erosion Measurement Stations Figure 19

REVISION _____ DOC NO. TWR-17544 VOL SEC PAGE 64

Metal-to-Adhesive Bondline Separations

	Radial Separation (in.)	**************************************	- .g	Standards (F
0-75 165-18 <u>0</u> 270-0	0.010 0.010 0.010			

-Aurent-Herrich (n. 1964) (1994) - Property (1994) (1994) - Herrich (1994) (199

Figure 20 STS-28A Nose Inlet Assy Bondline Separations

REVISION	DOC NO.	TWR-17544		VOL
	SEC		PAGE	65

STS-28A Forward Nose Ring and Aft Inlet Ring (-503 and -504) Section (0 deg) 21

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL.

SEC PAGE 66

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-28A Forward Nose Ring and Aft Inlet Ring (-503 and -504) Section (90 deg)

ORIGINAL FACE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL

ORIGINAL PAGE IS OF POOR QUALITY

REVISION DOC NO. TWR-17544 VOL.
SEC PAGE 68

STS-28A Forward Nose Ring and Aft Inlet Ring (-503 and -504) Section (180 deg)

ORIGINAL PAGE IS OF POOR QUALITY

REVISION

DOC NO. TWR-17544 | VOL SEC | PAGE | 69

DRIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-I7544 VOL PAGE 70

REVISION ____

ORIGINAL PAGE Thickol CORPORATION BLACK AND WHITE PHUTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO.	TWR-17544		√OL
SEC	PA	NGE 7 1	-

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL

REVISION ____

Thickol corporation SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 28 STS-28A Nose Cap Section (270 deg)

ORIGINAL PAGE IS OF POOR QUALITY

 DOC NO.
 TWR-17544
 VOL

 SEC
 PAGE
 73

Table 4 STS-28A Nose Inlet Rings (-503, -504) Erosion and Char Data

Angular Location			:	Stations			
	28	3 0	3 2	3 4	36	3 8	39
0 degrees							
Measured Erosion	1.16	0.86	0.86	0.82	0.82	0.93	0.96
Measured Char	0.71	0.83	0.64	0.50	0.59	0.61	0.63
Adjusted Char*	0.53	0.62	0.48	0.38	0.44	0.46	0.47
2E + 1.25AC	2.99	2.50	2.32	2.11	2.19	2.43	2.51
RSRM Min Liner Thkns	3.508	3.252	2.950	3.182		3.026	3.000
Margin of Safety	0.17	0.30	0.27	0.51	0.46	0.24	0.19
90 degrees							
Measured Erosion	1.02	0.81	0.89	0.84	0.83	0.93	0.96
Measured Char	0.75	0.76	0.61	0.51	0.57	0.61	0.59
Adjusted Char*	0.56	0.57	0.46	0.38	0.43	0.46	0.44
2E + 1.25AC	2.74	2.33	2.35	2.16	2.19	2.43	2.47
RSRM Min Liner Thkns	3.508	3.252	2.950	3.182	3.200	3.026	3.000
Margin of Safety	0 10	0,39	0.25	0.47	0 . 46	0.24	0.21
180 degrees							
Measured Erosion	1.01	0.80	0.90	0.80	0.80	0.87	0.93
Measured Char	0.70	0.71	0.63	0.59	0.62	0.63	0.63
Adjusted Char*	0.53	0.53	0.47	0.44	0.47	0.47	0.47
2E + 1.25AC	2.68	2.27	2.39		2.18	2.33	2.45
RSRM Min Liner Thkns		3.252	2.950	3.182		3.026	3.000
Margin of Safety	0.31	0.44	0.23	0.48	0.47	0.30	0.22
270 degrees							
Measured Erosion	1.13	0.96	0.98	0.87	0.88	0.92	0.96
Measured Char	0.73	0.68	0.64	0.51	0.59	0.61	0.65
Adjusted Char*	0.55	0.51	0.48	0.38	0.44	0.46	0.49
2E + 1.25AC	2.94	2.56	2.56	2.22	2.31	2.41	2.53
RSRM Min Liner Thkns	3.508	3.252	2.950	3.182	3.200	3.026	3.000
Margin o f Safety	0.19	0.27	0.15	0.43	0.38	0.25	0.19

* Measured Char Adjusted to end of action time

DOC NO TWR-17544 VOL

REVISION ___

8A Nose Cap Assembly Erosion and Char Data	Stations	8 10 12 14 16 18 20	0.46 0.52 0.55 0.70 0.75 0.88 1.	0.67 0.63 0.66 0.56 0.50 0.54 0.	0.54 0.50 0.53 0.45 0.40 0.43 0.	1.59 1.67 1.76 1.96 2.00 2.30 2.	2.45d 2.56d 2.6/8 3.08d 3.29d 3.50/ 4.0 0.55 0.60 0.64 0.58 0.65 0.52 0.5		.45 0.50 0.53 0.66 0.68 0.84 1.	.60 0.51 0.51 0.45 0.50 0.47 0.	.48 0.41 0.41 0.36 0.40 0.38 0.	1.50 1.51 1.57 1.77 1.86 2.15	2.458 2.668 2.878 3.088 3.298 3.507 4.	.64 0.77 0.83 0.74 0.77 0.63 0.		.39 0.41 0.46 0.50 0.61 0.68 0	55 0.56 0.53 0.59 0.46 0.50 0.	.44 0.45 0.42 0.47 0.37 0.40 0.	1.33 1.38 1.45 1.59 1.68 1.86 2.	2.458 2.668 2.878 3.088 3.298 3.507 4.	0.85 0.93 0.98 0.94 0.96 0.89		0.44 0.44 0.50 0.56 0.64 0.74 1.	0.60 0.63 0.61 0.52 0.43 0.56 0.	0.48 0.50 0.49 0.42 0.34 0.45 0.	1.48 1.51 1.61 1.64 1.71 2.04	2.458 2.668 2.878 3.088 3.298 3.507 4.	0.66 0.77 0.79 0.88 0.93 0.72 0.
Table 5 STS-28A		4	.38 0	0 69.	.54 0	.43	2.038 2.248 0.43 0.54		.37	.70 0	.56 0	1.38	.038 2	.42 0		.31	. 63	. 50	1.25 1.27	.038	.63 0.		ω.	.63	. 50		.038	.53
REVISION	Angular Location	9	ion		*	2E + 1.25AC NA	vo	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			* Li et	2E + 1.25AC	an Min Liner Thickness	Margin of Sarety NA	90 degrees	Measured Erosion	Char			4 Min Liner Thickness 1	Margin of Safety NA	135 degrees	Erosion	L	Justed		hickness	Margin of Safety NA

Thickol CORPORATION

TWR-17544

Theasured char adjusted to end of action time

* measured char adjusted to end of action time

DOC NO. TWR-17544 | VOL.
SEC | PAGE 77

REVISION ___

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

igure 30 STS-28A Cow1/OBR Closeup (0 deg)

ORIGINAL PAGE IS OF POOR QUALITY

REVISION	DOC NO.	TWR-17544		VOL
	SEC		PAGE	78

Thickol corporation SPACE OPERATIONS BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

TWR-17544 DOC NO. SEC 79

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 | VOL SEC | PAGE 80

REVISION ____

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

| DOC NO. | TWR-17544 | VOL | SEC | PAGE | 82

REVISION ____

Thickol CORPORATION ORIGINAL PAGE SPACE OPERATIONS BEACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 SEC

ORIGINAL PAGE IS OF POOR QUALITY

SEC

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-28A Cowl Ring Section (270 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544

REVISION	Angular Location	Tab		STS-28A Cowl/OBR	low1/0BF	Erosic	Erosion and Char Stations	Char Data	es 				
	0 degrees	0	-	2	m	4	ις.	9	٢	60	6	10	OP.
	Measured Erosion	NA	0.24	0.30	0.34	0.34	٣.	m	٣.	NA	NA	0.05	ER A 60.
	Char	NA	0.67	99.0	0.63	9.	0.68	0.70	0.59	N.A.	NA	0.86	17/0
	Adjusted Char *	ď í	0.54	0.53	0.50	0.51	0.54	LO.	₹.	МĀ	NA A	69.0	ΟN.
		¥ !	67:1	07.1	10.1	?	F	1 29	1 22	4	4	-	2 4 6
	RSRM Min Liner Thickness Margin of Safety	1.410 NA	1.499	1.577	1.655	1.733	1.811	1.889	1.957	1.600 NA	1.674 NA	1.687	1.703
) 1) • •		:		5	4	<u> </u>	7.	, ,
	45 degrees												
		NA	0.21	0.30	0.32	0.36	NA	NA	NA	NA	NA	0.04	0.12
	Measured Char	NA	0.67	0.55	0.59	0.55	NA	NA	NA	NA	NA	0.87	0.91
	Adjusted Char *	AN	0.54	0.44	0.47	0.44	NA	NA	NA	NA	NA	•	0.73
		AN	1.09	1.15	1.23	1.27	NA	! !	1				
	1.5(E + AC) Dodw Min Liner Thirkness	1 410	004	1 577	1 666	1 733		NA Pero	NA 1 ps.7	NA V	NA L	1.10	•
	Margin of Safety	NA		0.37		0.36	NA	NA	NA NA	NA NA	NA NA	0.53	0.34
	90 degrees												· .
		0.16	0.20	0.24	0.23	0.24	N.	NA	AN .	NA.	0.03	0.04	0.05
	na r	٠,٥٠	69.0	. o	89.0	0.70	N.A	Z N	Ą	NA	0.84	0.84	88.0
5,		0.54	0.55	0.54	'n.	0.56	NA :	NA	NA	NA	0.67	•	0.70
	1 ZE + 1.25AC	66.O	ь 60. Т	1.16	1.14	1.18	AN.		! !	1 1	1 0		
DO		1.410	1,499	1.577	S	,	1 8 1 1	2 P	NA 1 957	NA 1 600	1.05	1.07	1.13
C'NÔ	Margin of Safety	0.42	0.38	0.36	9.	0.47	NA	¥		NAN	0.59	0.58	0.51
'													
. 3	135 degrees												
ı W	TW.	A N	0.27	0.30	0.29	25	9	-	0 07	4 2	0	,	0
1\	Measured Char	NA	09.0	65.0	0.64	0.68	0.75	0.77	06.0	Ą Z	0.82		. 8.0
-	+Adjusted Char *	NA	0.48	0.47	0.51	0.54	09.0	0.62	0.72	ĄN	99.0	0.68	99.0
ر ،	42E + 1.25AC	AN	1.14	1.19	1.22	1.18	1.07	!	!	1	1	- [-
44	VI.S(E + AC)		1 0	1111	1	1		60.	. 19	YZ.		.07	⊣ !
NGE	Margin of Safety	NA NA	1.499 0.31	0.33	0.36	0.47	0.69	0.73	1.957	1 . 600 NA	1.674	1.687	1.703 0.55
vc	Ι	* Measured ch	ed char	adjusted	to end	of action	n time						
IL .			9	E	inimum l	liner thi	thickness						
		0 1116 1811	מו פר פר צ	2 X 6	rosion +	1.25 X	ad] char*	 :		stations	s u through	(c ubn	
-		:	•	Ĭ	nimum	liner thi	thickness						
		Margin of	f Safety	i				- 1		Stations	9	through 11.3)	_
				•		10 H 10 T	Cuar						

71 / /	
Thiokol	CORPORATION

Promotion of the second of the

100 degrees	Measured Adjusted SERM Winsted SERM Win Adjusted SERM Win Adjusted SERM Win Adjusted SERM Win Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted SERM Win ARSRM Min AGIN OF Measured Adjusted SERM Min Of Measured Adjusted Adjus													
Measured Checkers	Measured Adjusted 2E + 1.25 1.5 (E + A RSRM Min Adjusted ARSRM Min Margin of		0	-	7	е	₹	'n	9	7	œ	6	10	
### Washinged Chart 0.59 0	Measured Adjusted 2E 1 25 1.5 (E 1 25 Measured Adjusted 2E 4 1.25 1.5 (E + A Adjusted	iion	0.19	0.23	0.27	0.29	0.27	NA	NA S	N N	N A	AN X	0.03	0.03
Adjusted Chart Thickness 1.075 1.13 1.12 1.13 1.	Adjusted 1.5 (E + 1.25 1.5 (E + 1.25 1.5 (E + Adjusted 2.5 degre 2.5 degre 2.6 + 1.25 1.5 (E + Adjusted 2.70 degre 2.70 degre 3.5 degre 3.5 degre 3.5 degre 4.25 1.5 (E + Adjusted 2.7 1.25 1.5 (E + Adjusted 3.5 degre 3.5 degre 4.25 1.5 (E + Adjusted 4.5 (E + Adjusted 5.5 (E + Adjust		0.69	9.0	0.00) · ·	57.0	¥	4 2	{	(<u> </u>	۲ ۾ 2 ۾		7.7
### SECOND 1.00 1.0	A + 1 - 2 - 1 - 5 (E + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		0.0	40.0	1 1 9	1 24		Ç 4	\$ i	ç		.) - -)
### SAND THE CHICAGO STATE OF THE CASE AND STATE OF THE CONTRINE THE CHORSES THE CONTRINE STATE OF THE CASE OF THE	Measured Adjusted Adjusted Adjusted Adjusted 2E + 1.25				(1:1				N.	NA	NA	NA	1.09	1.17
255 degrees Massured Excesson 0.21 0.23 0.27 0.30 0.31 0.31 0.30 0.30 0.30 0.30 0.30	Measured Measured Adjusted 2E + 1.25 E + A Adjusted 2E + 1.25 E + A RSRM Min Margin of Measured Adjusted Argin of Argin of	ar Thickness Sety	1.410	1.499		. 65	1.733	1.811 NA	1.889 NA	1.957 NA	1.600 NA	1.674 NA	1.687	1.703
Management Man	Measured Adjustred 2E + 1.25 1.5(E + A 1.25(E + A 1.26(E + A 1.26(
Adjusted Char + 0.55	Measured Adjusted 2E + 1.25 1.5(E + 1.25 Measured Adjustred Ad	100	0.21	0.23	0.27	0.30	0.33	0.31	0.30	0.30	NA	NA	0.03	0.02
26 + 1.25cc 1.26 1.26 1.26 1.26 1.27 1.26 1.27 1.26 1.27 1.	Adjusted 2E + 1.25 1.5(E + A RSRM Min Measured Adjusted 270 degre Adjusted 28 + 1.25 1.5(E + A RSRM Min Margin of Measured Adjusted		0.57	0.63	0.65	0.63	09.0	09.0	0.64	0.73	NA	NA	0.82	0.80
1.5 (E + Ac) 1.5 Ac	2E + 1.25 1.5(E + A RSRM Min Measured Adjusted		0.46	0.50	0.52	0.50	0.48	0.48	0.51	0.58	NA	NA	99.0	0.64
1.5 (E + AC) 1.5	1.5(E + A RSRM Min Margin of Measured Adjusted Adjusted 1.5(E + 1.25 1.5(E + 1.25 Measured Measured Adjusted		0.99	1.09	1.19	1.23	1.26	1.22	1	1	!!!!		 	1
### RSBM Win Liner Thickness	RSRM Min Margin of Adjusted Adjusted Adjusted Adjusted Adjusted Margin of Margin of Adjusted		1	1	!!!!	1	!!!!	!	\sim	1.33	NA	NA	1.03	66.0
### STATE CONTRINGS	270 degre Measured Adjusted Adjusted 1.5(E + A RSRM Min Margin of Adjusted Adjusted 1.5(E + 1.25 Adjusted	ar Thickness Fety	1.410	1.499	1.577	.35	. 38	1.811	m in	1.957 0.48	1.600 NA	1.674 NA	1.687	0.72
Messured Erosion NA 0.24 0.27 0.27 0.26 0.26 0.17 0.17 NA 0.06 0.09 NA 0.68 0.60 0.60 0.60 0.60 0.60 0.60 0.17 0.17 NA 0.60 0.00 0.60 Advacted Char NA 0.68 0.65 0.57 0.56 0.76 0.84 0.99 NA 0.69 0.60 2E +1.25AC NA 1.08 1.16 1.20 1.24 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	Measured Adjusted 2E + 1.25 1.5(E + A RSRM Min Measured Adjusted 2E + 1.25 1.5(E + 1.25 1.5(E + 1.25 1.5(E + 1.25 Margin of Margin of									-				
### Adjusted Char	Measured Adjusted Adjusted 1.5(E + A RSRM Min Margin of Measured Adjusted 2E + 1.25 RSRM Min Margin of Margin of	ion	N N	0.24	0.27	0.27	0.26	0.22	0.17	0.17	A N	90.00	0.09	0.03
Adjusted Char NA 1.08 1.16 1.20 1.24 1.20 1.27 1.65 1.27 1.65 1.27 1.67 1.20 1.674 1.68 1.15 1.07 1.28 1.20 1.27 1.65 1.27 1.65 1.27 1.68 1.20 1.674 1.68 1.15 1.09 1.57 1.65 1.27 1.65 1.27 1.68 1.20 1.67 1.68 1.68 1.20 1.410 1.499 1.57 1.65 1.73 1.81 1.88 1.89 1.87 1.68 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.8	Adjusted 1.55 + 1.25 1.55 + 1.25 1.56 + 1.25 1.56 + 1.25 1.56 + 1.25 1.56 + 1.25 1.56 + 1.25 1.56 + 1.25 1.56 + 1.25 1.56 + 1.25 1.56 + 1.25		Ç ;				; u	, ,	79.0		4	09.0	0.62	0.70
1.5	2E + 1.25 1.5(E + A RSRM Min Margin of Measured Measured Adjusted 2E + 1.25 1.5(E + A RSRM Min Margin of		¥ ;	7.	00.0					• 1	; ;) 	1 1	1
### ### #### #### #### ###############	RSRM Min Margin of Measured Adjusted 2E + 1.25 1.5(E + A RSRM Min Margin of		4 I	0	0 1 1	7 1	F 7 7 7 7 7 7 7 7 7) 	1.26	1.32	NA	1.12	1.07	1.09
Margin of Safety 315 degrees Measured Erosion 0.19 0.26 0.29 0.32 0.34 NA NA NA NA NA 0.03 0.04 Measured Erosion 0.60 0.59 0.60 0.59 0.64 NA NA NA NA 0.08 0.87 Adjusted Char 0.48 0.47 0.48 0.47 0.51 NA NA NA NA 0.70 0.70 22 + 1.25C 0.98 1.11 1.18 1.23 1.32 NA NA NA NA 1.10 1.10 1.5(E + AC) RSRM Min Liner Thickness 1.410 1.499 1.577 1.655 1.733 1.811 1.889 1.957 1.600 1.674 1.687 Margin of Safety =	Margin of Masured Measured Adjusted 2E + 1.5(E + A RSRM Min Margin of	Thickness	1.410	1.499	1.577	. 65	۲.	•	88	1.957	1.600	1.674	•	1.70
### Margin of Safety #### Margin of Safety #### Margin of Safety #### Margin of Safety #### Margin of Safety ####################################	315 degre Measured Adjusted 25 + 1.25 RSRM Min Margin of	fety	NA	0.39	0.36	.38	4,	•	0.50	0.48	NA	0.49	Ś	0.56
Measured Erosion 0.19 0.26 0.29 0.32 0.34 NA NA NA NA 0.003 0.04 Measured Char 0.60 0.59 0.60 0.59 0.64 NA NA NA NA 0.88 0.87 Measured Char 0.48 0.47 0.48 0.47 0.51 NA NA NA NA 0.70 0.70 2E + 1.26 + AC 0.98 1.11 1.18 1.23 1.31 1.81 1.889 1.957 1.60 1.67 1.687 1.5(E + AC) RSRM Min Liner Thickness 1.410 1.499 1.577 1.655 1.733 1.811 1.889 1.957 1.600 1.674 1.687 Aargin of Safety 0.35 0.34 0.35 0.31 NA NA NA 0.52 0.53 Margin of Safety 2	Measured Measured Adjusted 2E + 1.25 E + A RSRM Min Margin of													
Adjusted Char 0.60 0.59 0.60 0.59 0.64 NA NA NA NA NA 0.88 0.87 Adjusted Char 0.48 0.47 0.48 0.47 0.51 NA NA NA NA NA 0.70 0.70 2E + 1.25AC	Measured Adjusted 2E + 1.25 1.5(E + A RSRM Min Margin of	sion	0.19	0.26	0.29	0.32	0.34	NA	NA	NA	ΑN	0.03	0.04	00.0
Adjusted Char* Adjusted Char* 0.48 0.47 0.51 NA NA NA NA NA NA 0.70 0.70 0.70 2E + 1.25AC 1.5E + AC) RSRM Min Liner Thickness	Adjusted 2E + 1.25 1.5(E + A RSRM Min Margin of	34	09.0	0.59	09.0	0.59	0.64	N.A	NA	NA	NA	88.0	0.87	1.03
2E + 1.25AC 0.98	2E + 1.25 1.5(E + A RSRM Min Margin of		0.48	0.47	0.48	0.47	0.51	Z A	4 Z	N N	NA	0.70	0 . 70	0.32
1.5(E + AC) 1.5(E + AC) 1.410	1.5(E + A RSRM Min Margin of		86.0	1.11	1.18	1.23	1.32	٧N	;				'	1 .
### Margin of Safety 0.35 0.31 NA NA NA NA 0.52 0.53 **Margin of Safety 0.35 0.34 0.35 0.31 NA NA NA NA 0.52 0.53 **Measured char adjusted to end of action time **Margin of Safety =	RSRM Min Margin of		! !			,			NA V	Z Y	NA 1	1.10	1.10	1. 24 1. 20
* Measured char adjusted to end of action time minimum liner thickness Margin of Safety =	Lyo	er Thickness fety	1.410	1.499	0.34	.35	0.31	NA NA	NA NA	NA NA	NA	0.52	0.53	0.38
Margin of Safety =			Measu	ed char	djusted	end								
gin of Safety =			.,	ų ė	E	nimum	iner thi	ckness			0.001.44.40.	-		
minimum liner thickness of Safety =			: - -	# T T T T T T T T T T T T T T T T T T T	7 X		1.25 X	char)		
of Safety =					Ē		iner thi	ckness	•			,	;	
				Sat	-	1 4	1				(Station:	٥	ngn tt.s	_

STS-28A Cowl Ring and Outer BOot Ring Erosion Measurement Stations Figure 38

NO.	TWR-17544	, +	VOL	
		PAGE	88	

DOC

SEC

REVISION ___

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 39 STS-28A Outer Boot Ring Section (0 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO TWR-17544		VOL
SEC TO THE TO	PAGE	89

Thickol CORPORATION SPACE OPERATIONS SHAME TO V

ORIGINAL PAGE SHARE HAVE BEACK AND WHITE PHOTOGRAPH

Figure 40 STS-28A Outer Boot Ring Section (90 deg)

ORIGINAL PAGE IS OF POOR QUALITY

REVISION ___

DOC NO. TWR-17544		VOL
SEC .	PAGE	00

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 41 STS-28A Outer Boot Ring Section (180 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL SEC PAGE 91

Figure 42 STS-28A Outer Boot Ring Section (270 deg)

REVISION	DOC NO.	TWR-17544	VOL
	SEC		PAGE 0.2

STS-28A Flex Boot (Cavity Side - 0 deg) 43 Figure

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544

SEC

PAGE

Thickol CORPORATION TO LAND SPACE OPERATIONS AND COLUMN STATE HOLD HOLD

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

YT. IACIO SCOTI DOC NO. TWR-17544

SEC

PAGE 94

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 SEC PAGE 95

REVISION ____

Table 7 STS-28A Flex Boot Data Performance Margins of Safety

Degree Location	Remaining Plies	Max Material Affected Depth (in.)	Margin of Safety*	
0	3 3/4	1.16	0.43	
45	3 3/4	1.16	0.43	
90	3 1/2	1.24	0.34	
135	3 1/2	1.24	0.34	
180	3 1/2	1.24	0.34	
225	3 1/2	1.24	0.34	
270	3 1/4	1.32	0.26	
315	3 1/4	1.32	0.26	
	* PMS =	minimum overall thickness		
(1.5 x max material affected depth)				

96

Thickol CORPORATION AND ADALU ORIGINAL PAGE SPACE OPERATIONS

BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

TWR-17544 DOC NO. SEC PAGE 97

A TANKET YHIAGO HOOG TO TWR-17544

Thickol CORPORATION ORIGINAL PAGE SPACE OPERATIONS BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 REVISION

SEC

Thickel CORPORATION ORIGINAL PAGE SPACE OPERATIONS HOLA TOUR OF THE WORLD STABLACK AND WHITE PHOTOGRAPH ORIGINAL PAGE

gr 4024 Br. 389 VITIALIA MIKIN 76

> DOC NO TWR-17544 100

Data
Char
and
Erosion
Housing Insulation
Housing
Fixed
STS-28A
Table 8

REVISION ____

Table	le 8 ST	S-28A	Fixed Hou	Housing In	sulatio	Insulation Erosion and		Char Data	a		
Angular Location					Stati	cions					
	0	п	7	м	4	s	9	7	65	6	10.75
0 dagraes											
Measured Erosion Measured Char	0.07	0.	0 -	0, -	0,0	9,0	0,0	۰.۰	٥. «	4 4 % 2	K A
ď	0.91		6, -	. 0						Z Z	Y X
zk † 1.20ac RSRM min Liner Thickness Margin of Safety	3.807	2.081 0.78	1.825	1.827	1.829	1.831	1.832	1.834 0.91	0.83 1.836 1.21	NA 2.426 NA	3.048 MA
90 degrees											e e e e e e e e e e e e e e e e e e e
Measured Erosion	80.0	0	0	-	_	_	-	_	-	-	2
	1.22	1.21	1.19	1.20	1.19	1.12	1.13	50. 80. 80.	9 9 9	1.02	Ç K
	86.0	6,	6.	6,	6.	6.	6	∞.	۲.	85	N.
2E + 1.25AC	1.38	. 25	. 19	. 20	. 19	. 12	. 13	.08	96.	.02	N.A.
RSRM min Liner Thickness	3.807	0,	ແ, ເ	دې د	α, ι	٠,	۰ به	ص ا •	∞, •	7	3.048
Margin of Sarety	9/·I	•	n,	n.	ŗ.	٠.	٠.	`.	⇒.	٣.	K N
180 degrees			Tr.								.
Measured Erosion	0.07	٥.	٥.	0,	0.	0,	0.	٥.	٥.	٥.	0.
Measured Char	1.24	₹.	٥.	6,	6	٥.	٥.	6.	∞,	6.	٦.
Adjusted Char*	66.0	Ġ.	۰.	۲.	۲.	٠.	∞.	۲.	٠,	٠.	4.
ZE + 1.25AC RSBM min Liner Shirkness	1.38	1.15	1.01	0.98	on a	1.81	0 .	۰. ۰	.87	ن و	. 76
Margin of Safety	1.76	. 8	. 81	. 86	. 60	. 6		16.0	1.11	1.58	0.73
270 degrees											
Measured Erosion	0.04	٥.	0.	0,	٥.	٠.	٥.	٥.	0.	٥.	٥.
Measured Char	1.23	0,	٦.	٥,	°.	°.	°.	6.	8	۲.	89
Adjusted Chart	86.0	**	6.	∞.	₩.	∞.	∞,	٠.	۲.	9.	·.
	1.31	2.5	. 13	90.	.03	0,	.05	6,	.87	. 78	.80
KSKM min Liner Thickness Margin of Safety	1.91	2.081	1.825	1.827	1.829	1.831	1.832	1.834	1.836	2.426	3.048
77 40 44 77 47 4	7	,						•	•	₹.	

DOC NO. TWR-17544 SEC PAGE 101

2 X Erosion + 1.25 X Adj Char* minimum liner thickness

Margin of Safety =

* Measured char adjusted to end of action time

ORIGINAL PAGE IS OF POOR QUALITY

Figure 50 Fixed Housing Liner Erosion Measurement Station

TITALO ROUN TO PAGE 102

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL

REVISION ___

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

BLACK ATO WHITE PHOINGRAPH

, \$ 10 5 40 000 1000 - **Y**11.2444) | 20 20 40 40 40

DOC NO. TWR-17544 | VOL.

SEC | PAGE | 104

REVISION ___

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO.	544	VOL
SEC	PAGE	
		105

REVISION _

Thickol CORPORATION, AMERICAN

ORIGINAL PAGE

ORIGINAL PAGE

ONS

HEARLOTON BLACK AND WHITE PHOTOGRAPH

The state of the s YTHEREO LOUR FO

TWR-17544 DOC NO.

PAGE 106

REVISION

SEC

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL.

REVISION ___

Figure 56 STS-28A Forward Exit Cone-to-Aft Exit Cone Joint Interface (Joint #1)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL.

SEC PAGE 109

REVISION _

Thickol CORPORATION

SPACE OPERATIONS

THE STATE OF THE S

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH HOARTHING PLANTER AVA

THING HUS 10

DOC NO. TWR-17544 SEC PAGE 110 Thickol CORPORATION
SPACE OPERATIONS

BLACK

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL

Thickol CORPORATION SPACE OPERATIONS

SPACE OPERATIONS

11 A SECTION AND A SECTION AND A SECTION AND A SECTION ASSECTION ASS

Figure 60 STS-28A Forward Exit Cone - Aft End (0 deg)

DOC NO. TWR-17544 VOL SEC PAGE 112

REVISION ___

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO.	TWR-17544	+	l	VOL	
SEC		PAGE	l	13	

REVISION ___

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO. TWR-17544 VOL

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Powder Residue (270 deg) STS-28A Aft Exit Cone Forward Face

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO.	TWR-1754	4		VOL
SEC		PAGE	ı	15

REVISION ___

ERROR OF THE STREW WAS FURNIS

Figure 64 STS-28B-Throat/Forward Exit Cone Joint (Joint #4)

REVISION	 DOC NO.	TWR-17544	VOL
	SEC		PAGE 116

REVISION

Thickol corporation ORIGINAL PAGE SPACE OPERATIONS BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

TWR-17544 DOC NO. SEC PAGE 117 Thickol CORPORATION

ORIGINAL PAGE SPACE OPERATIONS HT AZE 14 FEB & SEPAN SEPAN SEVAN BLACK AND WHITE PHOTOGRAPH

THE PERSON

TWR-17544 DOC NO. SEC 118

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 | VOL | SEC | PAGE | 119

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Y DOC NO TWR-17544 VOL

Thickol CORPORATION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

REVISION ____

DOC NO. TWR-17544 PAGE

VOL 121

ORIGINAL PAGE IS DE ROOR QUALITY

YTIJAUO 900 10

| DOC NO. | TWR-17544 | VOL | PAGE | 122

REVISION ____

Emain itiainus

Figure 71 STS-28A-Nose Inlet/Throat Housing Joint (Joint #3)

DOC NO. TWR-17544 VOL

3 (18 NO 8)

.gure 72 STS-28A Throat - Forward End (0 deg)

DOC NO. TWR-17544 | VOL | SEC | PAGE | 124

REVISION ____

ORIGINAL PAGE IS OF POOR QUALITY

| DOC NO. | TWR-17544 | VOL | SEC | PAGE | 125

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE

HEARIOTOHS BUILD AU BLACK AND WHITE PHOTOGRAPH

A Fith Mileto OF POOR QUALITY

Doc No. TWR-17544 REVISION

SEC PAGE 126

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 | VOL | SEC | PAGE | 127

REVISION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

- Aft End (120 deg) STS-28A Aft Inlet (-504) Ring Figure

ooc No. TWR-17544

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

 DOC NO.
 TWR-17544
 VOL

 SEC
 PAGE
 129

REVISION _

Figure 78 STS-28A Nose Inlet Housing/Flex Bearing Joint

REVISION DOC NO. TWR-17544 VOL SEC PAGE 130

Thickol CORPORATION . A GASTA

ORIGINAL PAGE BLACK AND WHITE PROTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL SEC PAGE 131

REVISION_

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO. TWR-17544 REVISION ___ SEC 132

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL.

SEC PAGE 133

REVISION

ORIGINAL PAGE HAAROOTORER STUDE STUDE AND WHITE PHOTOGRAPH

THE PROPERTY OF THE PROPERTY O

> DOC NO. TWR-17544 SEC

REVISION ___

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ı STS-28A Nose Cap

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544

SEC

Figure 84 STS-28A Nose Cap - Aft End (240 deg)

DOC NO TWR-17544 | VOL SEC | PAGE 136

REVISION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 85 STS-28A Bearing Forward End Ring (0 deg)

ORIGINAL PAGE IS OF POOR QUALITY

PAGE 137

REVISION ___

Thickel corporation ORIGINAL PAGE
SPACE OPERATIONS STATE OF THE PHOTOGRAPH
BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE

STS-28A Bearing Forward End Ring (120 deg)

1. 1. 1. 1. or the second payor of a great po

> PAGE 138 SEC

REVISION ___

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 87 STS-28A Bearing Forward End Ring (240 deg)

ORIGINAL PAGE IS OF POOR QUALITY

REVISION ____

DOC NO.	TWR-17544			VOL	
SEC		PAGE	1	39	

STS-28A Cowl Forward End

TWR-17544 DOC NO. REVISION SEC 140

Figure 89 STS-28A Flex Bearing/Fixed Housing Joint (Joint #5)

REVISION	DOC NO.	TWR-17544	VOL
TEVISION	SEC		PAGE 141

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-28A Fixed Housing Forward End

STATE OF STATE DOC NO. TWR-17544

SEC

ORIGINAL PAGE IS OF POOR QUALITY

REVISION _____ DOC NO. T

DOC NO.	TWR-17544			VOL
SEC		PAGE	1	43

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-28A Fixed Housing Forward End (240 deg)

SHITTER PARTY IS YTHAU BORG TWR-17544

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO.	TWR-17544		VOL	
SEC		PAGE	45	

REVISION _

Aft End Ring (120 deg) STS-28A Bearing 76 Figure

REVISION __

DOC NO. TWR-17544 SEC

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 95 STS-28A Bearing Aft End Ring (240 deg)

CRIGINAL PAGE IS OF POOR QUALITY

 DOC NO.
 TWR-17544
 VOL

 SEC
 PAGE 147

REVISION _

Figure 96 STS-28B Joint Flow Surface Gap Openings

REVISION DOC NO. TWR-17544 VOL.

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL.

SEC PAGE 149

REVISION ___

Thickol CORPORATION HANDELS SPACE OPERATION STORY STANDARD MOLES

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO. TWR-17544 | VOL | SEC | PAGE | 150

REVISION ___

gure 99 STS-28B Forward Nozzle Assembly (External)

DOC NO. TWR-17544

VOL

SEC

Figure 100 STS-28B Forward Nozzle Asseml

DOC NO. TWR-17544 | VOL SEC | PAGE | 152

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 | VOL | SEC | PAGE | 153

REVISION _

Table 9 STS-28B Aft Exit Cone Post-Flight Polysulfide Groove Radial Widths

DOC NO. TWR-17544 | VOL. | SEC | PAGE | 154

REVISION _

Forwa	ard End
	-Adhesive Separations
Location (deg)	Radial Separation (in.)
360 Circumferentia	0.020 illy

	Af	t End
		o-Adhesive Separations
	Location (deg)	Radial Separation (in.)
- January Spanner - Arde - St	0 30-45 60-75 105-135 150 285 300 330	0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.005

Figure 102 STS-28B Forward Exit Cone Bondline Separations

REVISION _____ DOC NO. TWR-17544 VOL SEC PAGE 155

Cone Liner STS-28B Forward Exit Figure 103

DOC NO. TWR-17544

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544

SEC

Thickol CORPORATION SPACE OPERATIONS BLACK AND WHELE PLUTOGRAPH

product initialine TE FOOR QUALITY

DOC NO TWR-17544 SEC PAGE 158

REVISION

STS-28B Forward Exit Cone Liner Section (270 deg)

Figure 105

Table	ole 10	STS-28B	Forward	Exit	Cone Erosion and	sion and	Char	Data		
Angular Location					Stat	Stations				
	-	4	6 0	1.2	16	20	24	28	3.2	34
0 degrees										
	•	,	ć N	2	2	2	42	a N	42	2
Measured browners	, 4	3	(A	4 2	4 2	5 4 2	4 2	5 A	5 K	C A
Meducied Chai		80.0	K N	í X	(A	K N	N.	N.	N.	X
2E + 1.25AC	, m	1.37	NA	ΑN	Ą	N A	Z Z	NA	NA	NA
RSRM Min Liner Thickness		1.731	1.629	1.524	1.426	1.356	1.322	1.328	1.372	
Margin of Safety	m,	0.26	NA	NA	NA	AN	۲	NA	N A	NA
90 degræes										
Measured Erosion	٣.	0.33	NA	NA	NA	NA	NA	~	0.19	-
Measured Char	۲.	0.81	NA	NA	NA	NA	N A	-	0.70	7
Adjusted Char*	0 :63	0.65	NA	ΝA	NA	NA	MA	0.56	95.0	0.57
2E + 1.25AC	4	1.47	NA	z	NA	NA		28	80.	0
RSRM Min Liner Thickness	8	۲.	1.629	1.524	1.426	1.356	1.322	m	1.372	1.408
Margin of Safety	. 7	0.18	NA N	¥ Z	NA	N A	NA	0	0.27	m
180 degrees										
Measured Erosion	۳,	٣,	0.33	NA	NA	NA	NA	NA	NA	NA
Measured Char	0.71	0.73	0.72	NA	N A	NA	ΝA	NA	NA	NA
Adjusted Char*	.2	'n	0.58	NA	NA	NA	K Z	NA	NA	Z A
2E + 1.25AC	٣.	۳.	. 38	Æ	A N				NA NA	
RSRM Min Liner Thickness	∞.			1.524	1.426	1.356	1.322	1.328	1.372	
Margin of Safety	Υ.	7.	- .	Y Y	N N	A N	A Z	ď Z	Y Z	ď Z
270 degrees										
•										
Measured Erosion	0.32	0.41	NA	NA	NA	NA	N.	۳.	٦.	0.16
Measured Char	∞	97.0	NA	NA	NA	N A	A N	9,	9	0.67
Adjusted Char*	٠,	0.61	NA	NA	NA	A N	NA		4	ŝ
2E + 1.25AC	52	٠.	K N	NA	МA		N.A	. 26	6.	66.
RSRM Min Liner Thickness	1.807		1.629	1.524	1.426	1.356	1.322	1.328	1.372	1.408
Margin of Safety	0.19	۲,	K K	NA	A N	NA	NA	٥.	m.	₹.

DOC NO. TWR-17544 VOL

SEC PAGE 159

2 X erosion + 1.25 X adj char*

Margin of Safety

* Measured Char Adjusted to end of action time

REVISION

DOC NO. TWR-175

Metal-to	d End -Adhesive Separations
Location (deg)	Radial Separations (in.)
0-105 120-210 225-345	0.020 0.010 0.020

Aft End Metal-to-Adhesive Bondline Separations			
Location (deg)	Radial Separation (in.)		
360 Circumferenti	0.035 ally		

Figure 106 STS-28B Throat Assembly Bondline Separations

DOC NO TWR-17544 VOL

REVISION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL

REVISION _

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

POOR QUALITY

DOC NO. TWR-17544 VOL SEC PAGE 162

REVISION ____

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL SEC PAGE 163

STS-28B Throat/Throat Inlet Section (180 deg)

Figure 109

REVISION

DOC NO. TWR-17544 VOL.

SEC PAGE 164

REVISION ___

Thiokol	CORPORATION
SPACE OPERATIONS	

-

SPACE OF	PERA	TION		. •			•			•		•
		23	0.37 0.83 0.62	. T.		0.80 0.60 1.55	T. E.		4.00 0	1.59 2.11 0.33		0.36 0.82 0.62 1.49 2.11 0.42
		22	410	1.58 2.583 0.63		0.45 0.80 0.60 1.65	ι.		4 60 6	1.70		0.45 0.75 0.56 1.60 2.583 0.61
		20	0.66 0.71 0.53	. 2.		0.69 0.75 0.56 2.08	7.0.		7. 5.	2.10 3.231 0.54		0.69 0.71 0.53 2.05 3.231 0.58
		1.8		w. v. v.		0.88 0.73 0.55	2.4		6. 6.	3.52 3.586 0.42		0.89 0.59 0.44 2.33 3.586
Data		16	1.05	 4		1.06 0.63 0.47 2.71	3.710 0.37		0. 4	2.69 3.710 0.38		1.06 0.55 0.41 2.64 3.710
nd Char		14	1.12 0.54 0.41	. 9 · E		1.14 0.59 0.44 2.83	9.7		4.5.4	2.76 3.626 0.32		1.14 0.51 0.38 2.76 3.626 0.31
Erosion and Char	Stations	12	1.15	2.73 3.517 0.29		1.18 0.45 0.34 2.78	5.4		ښنې ښ	2.79 3.517 0.26		1.15 0.52 0.39 2.79 3.517 0.26
embly Er	••	10	1.17	₽ ₩ ₹		1.21 0.43 0.32 2.82	w 4.		2.2.4	2.94 3.397 0.16		1.16 0.52 0.39 2.81 3.397 0.21
Throat Assembly		80	1.28	6, 1, 0,		1.29 0.48 0.36	٠. ٥.		5.5.4	3.04		1.29 0.42 0.32 2.97 3.183
28B Thro		9	1.17	6,71		1.17 0.68 0.51 2.98	7.7		4.04	2.99 3.280 0.10		1.22 0.55 0.41 2.96 3.280
l STS-		4	1.15 0.59 0.44	2.85 3.314 0.16		1.14 0.71 0.53 2.95	3.314		1.17	2.98 3.314 0.11		1.14 0.64 0.48 2.88 3.314 0.15
Table l		7	1.11 0.52 0.39	2.71 3.247 0.20		1.13 0.65 0.49 2.87	3.247		1.10	2.87 3.247 0.13		1.12 0.57 0.43 2.77 3.247
		-	1.07 0.52 0.39	2.63 3.174 0.21		1.08 0.70 0.53 2.82	3.174		1.10	2.85 3.174 0.11		1.07 0.57 0.43 2.67 3.174 0.19
REVISION _	Angular Location	0 degrees	Measured Erosion Measured Char Adjusted Char	2E + 1.25AC RSRM Min Liner Thickness Margin of Safety	90 degrees	Measured Erosion Measured Char Adjusted Char * 2E + 1.25AC	RSRM Min Liner Thickness Margin of Safety	180 degrees	Measured Erosion Measured Char Adjusted Char	2E + 1.25AC RSRM Min Liner Thickness Margin of Safety	270 degrees	Measured Erosion Measured Char Adjusted Char * 2E + 1.25AC RSRM Min Liner Thickness Margin of Safety

* Measured char adjusted to end of action time

TWR-17544

Location (deg)	Radial Separation (in.)
45-270	0.010

Figure 111 STS-28B Nose Inlet Assembly Bondline Separations

DOC NO	TWR-17544		VOL
SEC		PAGE	166

REVISION

HE VISION ____

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-28B Forward Nose Ring and Aft Inlet Ring (-503 and -504) Section (0 deg)

DOC NO. TWR-17544 VOL SEC PAGE 167

Thickol CORPORATION STATE ASPACE OPERATIONS

DOC NO. TWR-17544 VOL SEC PAGE 168

REVISION ___

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 | VOL | PAGE | 169

STS-28B Forward Nose Ring and Aft Inlet Ring (-503 and -504) Section (180 deg)

REVISION

ORIGINAL PAGE HEATING THAT AND THE GIVE GIVE AND THE PHOTOGRAPH

REVISION

DOC NO. TWR-17544

170

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL.

SEC PAGE 171

REVISION

rre 117 STS-28B Nose Cap Section (90 deg)

g = Probleman

TWR-17544

VOL

SEC

PAGE ,

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

REVISION ___

DOC NO.	TWR-1754	4		vol	
SEC		PAGE	1	73	

REVISION _

ORIGINAL PAGE HEATTONS OF THE TOTAL STATE BLACK AND WHITE PHOTOGRAPH

igure 119 STS-28B Nose Cap Section (270 deg)

DOC NO. TWR-17544 VOL

Table 12 STS-28B Nose Inlet Rings (-503, -504) Erosion and Char Data

Angular Location			S	Stations			
	2 8	30	3 2	3 4	36	38	39
0 degrees							
Measured Erosion	1.07	0.87	0.89	0.84	0.81	0.81	0.83 0.65
Measured Char	0.63	0.63	0.62	0.51	0.30	0.30	0.49
Adjusted Char*	0.47	0.47	0.47	0.38	2.09	2.15	2.27
2E + 1.25AC	2.73	2.33	2.36	2.16	3.200	3.026	3.000
RSRM Min Liner Thkns	3.508	3.252	2.950	3.182	0.53	0.41	0.32
Margin of Safety	0 . 28	0.40	0.25	0.47	0.55	0.41	0.52
90 degrees							
Measured Erosion	1.09	0.90	0.90	0.85	0.87	0.94	0.96
Measured Char	0.72	0.63	0.56	0.51	0.53	0.57	0.64
Adjusted Char*	0.54	0.47	0.42	0.38	0.40	0.43	0.48
2E + 1.25AC	2.86	2.39	2.33	2.18	2.24	2.41	2.52
RSRM Min Liner Thkns	3.508	3.252	2.950	3.182	3.200	3.026	3.000
Margin of Safety	0.23	0.36	0.27	0.46	0.43	0.25	0.19
180 degrees							
Measured Erosion	1.08	0.94	0.84	0.81	0.84	0.93	0.95
Measured Char	0.71	0.63	0.59	0.56	0.51	0.54	0.66
Adjusted Char*	0.53	0.47	0.44	0.42	0.38	0.41	0.50
2E + 1.25AC	2.83	2.47	2.23	2.15	2.16	2.37	2.52
RSRM Min Liner Thkns	3.508	3.252	2.950	3.182	3.200	3.026	3.000
Margin of Safety	0.24	0.32	0.32	0.48	0.48	0.28	0.19
270 degrees							
Measured Erosion	1.13	0.91	0.89	0.87	0.85	0.92	0.93
Measured Char	0.65	0.57	0.57	0.51	0.52	0.59	0.67
Adjusted Char*	0.49	0.43	0.43	0.38	0.39	0.44	0.50
2E + 1.25AC	2.87	2.35	2.31	2.22	2.19	2.39	2.49
RSRM Min Liner Thkns	3.508	3.252	2.950	3.182	3.200	3.026	3.000
Margin of Safety	0.22	0.38	0.27	0.43	0.46	0.26	0.21

^{*} Measured Char Adjusted to end of action time

DOC NO.	TWR-17544			VOL
SEC		PAGE		
			- 1	75

REVISION _

Thiokol	CORPORATION
SPACE OPERATIONS	

Cap Assembly Erosion and Char Data	Stations	12 14 16 18 20 22 24 2		.56 0.49 0.63 0.74 0.95 1.41 1.57 1 .47 0.54 0.47 0.41 0.43 0.58 0.71 0 .38 0.43 0.38 0.33 0.34 0.46 0.57 0	1.59 1.52 1.73 1.89 2.33 3.40 3.85 2. 2.878 3.088 3.298 3.507 4.055 4.713 4.691 3. 0.81 1.03 0.91 0.86 0.74 0.39 0.22 0.		0.51 0.50 0.62 0.72 0.95 1.43 1.57 1. 0.49 0.55 0.43 0.45 0.40 0.57 0.70 0.	.51 1.55 1.67 1.89 2.30 3.43 3.84 2	.01 0.99 0.97 0.86 0.76 0.37 0.22 0		.54 0.58 0.67 0.79 1.04 1.50 1.65 1.51 0.51 0.50 0.43 0.45 0.45 0.67 0.71 0	41 0.40 0.34 0.36 0.36 0.54 0.57 0 sq 1.56 1.77 2.03 2.53 3.67 4.01 2	2.878 3.088 3.298 3.507 4.055 4.713 4.691 3.0.81 0.86 0.86 0.73 0.60 0.28 0.17 0.		.48 0.64 0.71 0.87 1.10 1.61 1.80 1	.61 0.46 0.47 0.43 0.48 0.63 0.66 0	.49 0.37 0.38 0.34 0.38 0.50 0.53 0	.57 1.74 1.89 2.17 2.68 3.85 4.26 3	2.878 3.088 3.298 3.507 4.055 4.713 4.691 3. 0.83 0.77 0.74 0.62 0.51 0.22 0.10 0.	
-28B Nose	-	8 10		.40 0.4 .52 0.5 .42 0.4	1.32 1.37 2.458 2.668 0.86 0.95		0.39 0.38	.32 1.29	.86 1.0		.52 0.5	.38 0.3	2.458 2.668 0.62 0.73		.45 0.4	.58 0.5	.46 0.4	.48 1.50	2.458 2.668 0.66 0.78	
Table 13 STS		4			1.16 1.32 2.038 2.248 0.76 0.70		0.32 0.35		•	-			2.038 2.248 0.52 0.58					1.31	2.038 2.248 0.59 0.72	
REVISION .	Angular Location	1.5	degrees	Measured Erosion 0.27 Measured Char 0.63 Adjusted Char 0.50	r Thickness ety	45 degrees	Messured Erosion 0.28		KSKM Min Liner inickness 1.770 Margin of Safety 0.47	90 degrees	Erosion Char	Adjusted Char * 0.52	RSRM Min Liner Thickness 1.776 Margin of Safety 0.40	5 degrees	ion	Measured Char 0.64	*		KSKM Min Liner Thickness 1.776 Margin of Safety 0.48	

margin of safety = _________ z x erosion + 1.25 X adj char*

* measured char adjusted to end of action time

TWR-17544

H

Thi SPACE OF	OK PERA	EO TIÓN	e c	CORP	POR	ATIO	7.Ν 2.Ν	¥At ,.41¥			д	ji)	الموال	Je													
		26		1.33		7.	. 20		4	٠.	'n.	.05	3.863			4	7.	S.	. 53	3.863			۲,	9.	4.	.86	3.863
		24		1.83	. 4	m, v			•	•	•		4.691				•	•	. 52	0.04			s.	٠.	S.	eo, '	4.691
		2.2		1.63	0.52	3.91	. 21		ď	S	*	9.	4.713			7.	5	4	.01	4./13			1.45	0.54	0.43	3.44	4.713
lont)		2.0		1.10	. "	9.0	. 5.		0	4.	۳.	9.	0.63			٦.	4.	۳.	99.	0.52			σ.	7.	m.	. 31	4.055
Cap Assembly Erosion and Char Data (Cont)		18			. m	0, "	. 69		0.78	0.47	•	2.03	3.50/ 0.73			**	4.	۳,	٦, ١	3.50/ 0.64			ζ,	4.	. .	6	3.507
nd Char		16		0.70	0.41	1.91	.73		69.0	0.54	.43	-92	3.298 0.72			0.74	0.40	0.32	80 (3.298 0.75			9.	٠.	۳.	.67	3.298 0.97
osion a	Stations	14		0.61	68.0	1.71	. 69		.5	S.	4	69.	3.088 0.83			9	ς.	4.	.74	3.088 0.77			5.	₹.	w.	94.	3.088 1.07
mbly Er	v	12	-	0.53	•	'n.	. 4		•	•	•	.57	0.83				•	•	.57	0.83			7.	₹,	۳.	. W.	2.8/6 1.15
ap Asse		10		0.42		•	. 89		₹.	'n	4	2 2	0.84			0.47	0.51	0.41	. 45	0.84			ŗ.	Š	₹.	. 20	1.22
Nose		60		0.45		1.43	72		0.43	0.62	0.50	00 1	0.66			0.49	S	0.40	47 ·	0.66			m	0.53	4 (27	0.94
STS-28B	* ,22	 •		0.39	0.50	1.40	0.61		0.35	0.65	0.52	1.35	0.67			0.35	0.57	0.46	1.27	0.77			0.35	95.0	0.45	97.	2.248 0.78
Table 13		4		0.24	0.57	1.19	0.71		0.30	0.65	0.52	1.25	0.63			0.32	0.63	0.50	1.27	0.60			0.28	0.63	0.50	1.19	2.038 0.71
Ta	TO: MATE	1.5		0.24	0.56	1.18	0.51		0.30	9.65	0.52	1.25	0.42			0.26	0.59	0.47	1.11	09.0			МА	K N	¥ :	Z.	NA NA
REVISION	lar Location		degrees	Measured Erosion Measured Char	Char *	25 + 1.25AC RSRM Min Liner Thistones	Margin of Safety	degrees			Adjusted Char *	2E + 1.25AC	nska min Liner inickness Margin of Safety		degrees	Measured Erosion		Adjusted Char *		marm nim Linet inickness Margin of Safety	4 4 5)			Adjusted Char *	1.25AC	skm min Liner inickness argin of Safety
	Angul		180	Me A	Adju	2E +	Z a z	225	Meas	Me & S	Adju	2E +	Marg		270	Meas	Meas	Adju	2E +	Marg	31.5	1	Meas	Ke a s	Adju	4 37	Marg

THE ACT SAME SAME

ninimum liner thickness

2 X erosion + 1.25 X adj char* measured char adjusted to end of action time

ਜ |

TWR-17544

margin of safety =

Figure 120 STS-28B Cowl Ring Section (0 deg)

DOC NO. TWR-17544 | VOL | PAGE | 178

REVISION ____

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

figure 121 STS-28B Cowl Ring Section (90 deg

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL SEC PAGE 179

REVISION

ORIGINAL PAGE SPACE OPERATIONS BLACK AND WHITE PHOTOGRAPH

TWR-17544 DOC NO. 180

REVISION _

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 SEC 181

REVISION

REVISION	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Table	14 ST8	STS-28B Cow1/OBR	w1/0BR	Erosion	and	Char Data					SPAC
ON		Ċ		,	~	4		Stations		a	d	ç	
		,	4	4	n	~	n	D	-	10	3 0	10	PER.
		0.23	0.26	0.29	0.30	0.27	NA	NA	NA	NA	NA	0.04	
	Measured Char	0.56	0.58	0.56		٠	N.	NA	NA	NA	NA	0.79	0.75 00
	L.	0 - 4 - 0	0.46	0.45	0.44	0.46	Y N	NA	NA	NA	NA	0.63	
	1.5/E + 2.25AC	70.1	01.1	1.14	1.15	11.1	۷ ع	;					
		1.410	1 499	1 577	1 655	1 733		Z .	NA .	NA V	MA.	1.01	
	Margin of Safety	0.38	0.36	0.38	0.44	56.1	7 7 7 7	A 4 0 0 4	MAN WAS	1.600	L . b / 4	/ 89. 1	1.703
	•))	•		•		£	Ç.	Ç	6.6	OHA
	45 degrees					-							
	Measured Erosion	ΑN	0.29	0.31	25	25	42	8	4	,	Ş	•	
		NA	0.55	1 0	11.0	44.0	\$ A	(«	۲ م د د	4 £	Y :	00.00	0.00
		NA	44.0	0.47	55.0		\$ 4 2	\$ A	¥ 2	4 ×	Y X	28.0	7 (
	2E + 1.25AC	NA	1.13	1.21	1.15	1.14	Ç Z	4	4	2	¥	0	99.
	1.5(E + AC)	1	1				:	N.	N.	4	4	8	
	RSRM Min Liner Thickness	1.410	1.499	1.577	1.655	1.733	1.811	1.889	1.957	1,600	1.674	1 587	1.00
	Margin of Safety	NA	0.33	0.30	0.44	0.52	N A	NA	NA	N.A.	N AN	0.71	0.71
. 8	-												ļ. ".
Tuể	- 90 degraes												
* = =	-												1-2
T pr	Measured	0.28	0.31	0.32	0.32	0.31	NA	NA	NA	NA	NA	0.02	00.00
ż	Measured Char	0.54	0.56	0.57	0.63	0.67	NA	N.A	NA	NA	NA	0.93	1.00
	Adjusted Char *	0.43	0.45	0.46	0.50	0.54	NA	NA	NA	NA	NA	0.74	0.80
SI	2 1 5 F + 2 2 AC	1.10	1.18	1.21	1.27	1.29	NA		!		1	1	!!!
EC		1 410	1 4 9 9	1 577	1 656		-	Z Y	AN.	NA.	AN,	1.15	•
NQ.		0.28	0.27	0.30	0.30	0.34	NA.	NA NA	/ C & Y	009.T	1.6/4 N	1.687	1.703
-								-	:	•	§	, ,	•
	M. 135 degrees												
_	R-												
- 1	Measured Erosion	NA	0.24	0.27	0.26	0.25	0.24	0.21	0.18	ĄN	NA	0.01	90.0
_		ΝA	09.0	0.64	0.68	99.0	0.68	0.70	0.79	NA	NA	1.01	0.94
	Adjusted Char *	AN	0.48	0.51	0.54	0.53	0.54	95.0	0.63	NA	NA	0.81	0.75
P	2E + 1.25AC	ď.	1.08	1.18	۲.	1.16	1.16		[!	1	1	
GE	RSRM Min Liner Thickness	1 410	1 4 9 9	1 577	1 1 1 1	1 733	-	1.16	1.22	NA.	NA.	1.23	1.22
	Margin of Safety	NA	0.39	0.34	0.38	0.49	77077	0.64	1.937	00 4 N	1.0/4 4M	7.687	1.703
18:	1.								! !	•	i	;	
	v ol	* Measure	d char	adjusted	to end	of action	time						
		1	ď		minimum 1	liner thickness	kness						
		10	7	2 X 91	erosion +	1.25 X a	adj char*		~	Stations	0 through	gh 5)	
				E	in montum	liner thickness	υ . Θ						
		Margin of	f Safety					⊣ 1	_	(Stations	9	through 11.3)	
				1.5	X (erosion	+	adi char*)				,		

REVIS	Angular Location	Table 14	STS-28	8B Cow1/	OBR Ero	Cow1/OBR Erosion and Char		Data (Cont)	ont)					71
ION		0	H	73	m	4	ហ	.	٢		·	10		ric
	T P P P P P P P P P P P P P P P P P P P	0 . 23 0 . 63 0 . 50 1 . 0 9 1 . 4 10	000414	0.31 0.65 0.52 1.27	0.28 0.72 0.58 1.28	0.21 0.72 0.58 1.14	0.20 0.77 0.62 1.17	0.17 0.78 0.62 1.19	0.16 0.78 0.62 1.18	NA NA NA NA 1.600	0.02 0.92 0.74 1.13	0.03 0.86 0.69 1.08	FRATIONS +10.00000000000000000000000000000000000	kol col
	Margin of Safety 225 degrees Measured Erosion Heasured Char Adjusted Char 2E + 1.25AC 1.5(E + AC) RSRM Inner Thickness Margin of Safety	0.29 0.21 0.64 1.06 1.106 0.33	0.31 0.25 0.65 1.15 1.15 0.30	0.24 0.28 0.61 0.49 1.17 1.57 7.73	0.29 0.72 0.72 1.22 1.22 1.65 0.36	0.52 0.21 0.76 0.61 1.18 1.733	0.55 NA NA NA NA NA NA NA NA NA	ഗ ഭിഭിഭി വി വി	0.66 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA N	NA N	0.57 0.04 0.89 0.71 1.13	m.	RPORATION
	270 degrees Measured Erosion Measured Char Adjusted Char 2 E + 1.25AC	0 0 0 1 E 4 W 0 Z 4 A A	0.31 0.52 0.42 1.14	0.37 0.55 0.44	0 0 . 3 4	0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .	0.55 0.67 0.54 1.17	0.00.05	5000	NA NA NA	0.05	0.06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
SEC TWK-	A RESERVITE TANGES OF RESERVITE OF SAFETY MARGIN OF SAFETY A 315 degrees	0 . 3 3 0 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.31	0.22	1.655	0.39	1.811 0.55 MA	0.00	1.957 0.59 6.59	1.600 NA	1.674 0.43	0.49	0	
PAGE 183	Measured troston Veasured Char Valueted Char Valueted Char VE + 1.25AC VE + AC) RSRM Min Liner Thickness Margin of Safety	M N N N N N N N N N N N N N N N N N N N	NA 0.58 NA 0.46 NA 1.04 1.410 1.499 NA 0.44	0.59 0.59 0.47 1.15 1.577 0.37	10.00 10.00	0.27 0.36 1.24 1.73 1.733 0.40	NA NA NA NA 1 811	NA NA NA NA NA NA	NA NA NA NA 1.957	NA NA NA NA NA	NA NA NA NA 1.674	0.76 0.61 0.61 1.06 1.68 0.59	0.88 0.70 0.70 1.10 0.55	
	VOL		Safety Safety Safety		inimum rosion inimum X (ero	1 4 1 4 1	* 1.0 * 1	1 1	•	(Stations	0 9	through 5) through 11.3)		

Figure 124 STS-28B Outer Boot Ring Section (0 deg)

REVISION	***	- DOC NO.	TWR-17544	VOL	
· · · · · · · · · · · · · · · · · · ·		SEC	PAGE 1	8/4	

: <u>=</u>

ORIGINAL PAGE Thickol CORPORATION BLACK AND WHITE PHOTOGRAPH

Figure 125 STS-28B Outer Boot Ring Section (90 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO.	TWR-17544	+		VOL	
SEC		PAGE	1 (o E	

REVISION

ORIGINAL PAGE

Figure 126 STS-28B Outer Boot Ring Section (180 deg)

REVISION	-	DOC NO.	TWR-1754	4	VOL
		SEC		PAGE 1	86

Figure 127 STS-28B Outer Boot Ring Section (270 deg)

ORIGINAL PAGE IS OF POOR QUALITY

REVISION ____

DOC NO.	TWR-17544		VOL	
SEC		PAGE		_
			187	

Thickol CORPORATION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

TWR-17544 21 70.17 / SECTO 188 OF FOUR QUALITY

REVISION

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL.

SEC PAGE 189

REVISION _

Figure 130 STS-28B Flex Boot (Cavity Side - 240 deg

REVISION ___

DOC NO. TWR-17544

SEC

190

^___

Thickol CORPORATION

Table 15 STS-28B Flex Boot Data Performance Margins of Safety

	- in	(1.5 x max material aff	-
	* PMS =	minimum overall th	ickness
315	4	1.08	0.54
270	3 1/4	1.32	0.26
225	4	1.08	0.54
180	4	1.08	0.54
135	3 1/2	1.24	0.34
90	3 1/2	1.24	0.34
45	4	1.08	0.54
0	4	1.08	0.54
Degree Location	Remaining Plies	Max Material Affected Depth (in.)	Margin of Safety*

191

gure 131 STS-28B Fixed Housing Section (0 deg)

DOC NO. TWR-17544 VOL

REVISION ___

192

ORIGINAL PAGE IS OF POOR QUALITY

REVISION DOC NO. TWR-17544 VOL

Figure 132 STS-28B Fixed Housing Section (90 deg)

Figure 133 STS-28B Fixed Housing Section (180 deg)

boc No. TWR−17544 vol.

SEC PAGE
194

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL.

SEC PAGE 195

REVISION _

Data
Char
and
Erosion
Insulation
Housing
Fixed
STS-28B
16
ble

Angular Location					Stat	ations					
	0	т	7	m	4	'n	ø	7	•••	ø	10.75 V
0 degrees											
Measured Erosion	0.10	٠,	٥.	0	٥.	٥.	٥,	00.0	٥.	٥.	.36
Measured Char	1.00	۳.	6	6.	6.	6.	6	96.0	۲.	s.	.27
Adjusted Char*	08.0	١.	۲.	۲.	۲.	۲.	۲.	0.77	.5	₹.	. 02
2E + 1.25AC	1.20	•	.91	.94	92	σ.	.94	96.	.74	. 63	6.
RSRM min Liner Thickness Margin of Safety	3.807	1.24	1.825	1.827	1.629	1.831	1.832	1.834	1.836	2.426	3.048
90 degrees											
Measured Erosion	0.04	٥.	٥.	٥,	0,	۰.	٥.	٥.	٥.		ı,
Measured Char	1.20	٥.	٥.	6,	٥.	Ö,	٠.	۰.	9	**	7
Adjusted Char*	96.0	٠,	۲.	٦.	•	*	49	∞.	۲.		٠.
2E + 1.25AC	1.28	1.07	0.97	0.93	1.01	1.04	1.00	1.04	0.92	1.01	2.40
RSRM min Liner Thickness	3.807	٥,	₩,	₩.	•	60	€,	₩,	•	₹.	٥.
Margin of Safety	1.97	.94	æ	ġ.	. 8 1	٠.	**	۲,	٥.	4	7.
180 degrees											
Measured Erosion	0.11	٠.	۰.	٥.	۰.	٠,	0,	٥.	0.	0,	٥.
Measured Char	1.02	1.16	1.13	1.12	1.16	1.15	1.12	1.14	1.03	1.10	2.01
Adjusted Char*	0.82	σ.	96.	9	o.	σ,	σ,	6,	45	₩.	9.
2E + 1.25AC	1.24	. 16	.13	. 12	.16	∹	. 12	٦.	.03	. 10	. 15
RSRM min Liner Thickness	3.807	۰, ۱	825	≈ ़ न	₩.	₹,	₽.	₩.	**	₹.	۰.
margin of safety	70.7	`.	70	<u> </u>	n,	•	4	٥	`.	7	4.
270 degrees											
and the state of t	0.10	•	•		•	•	-		-		2
		•	•	<u>,</u> (,	? •	•	,	•	•	5 1
	77.7	- (? '	? '	٠,	٠,	٠.	ې پر		•	K I
Adjusted Char*	06.0	6.	×, •	∞. '	٠.	•	•	*	9	•	N N
ZE + 1.25AC	1.32	7.	70.	۰, ۱	9. (. 0	50	۰, ۱	8.	. 97	¥ .
Kuka min Lindr inickness Kernis of Gefett) a a	180.7	1.825	778.1	1.00 Z	1.831	1.832	1.854 2.00	1.836	2.4.26	3.048
) ;	•	:	•	•	•			?	•	4

10 A.M.

Measured char adjusted to end of action time

2 X Erosion + 1.25 X Adj Char* minimum liner thickness Margin of Safety

TWR-17544 DOC NO. VOL SEC PAGE 196

REVISION ___

Figure 135 STS-28B Bearing Protector (0 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL PAGE 197

REVISION _

STS-28B Bearing Protector (90 deg)

REVISION

 $\quad \text{doc no.} \quad TWR-17544$

REVISION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 137 STS-28B Bearing Protector (270 deg)

DOC NO. TWR-17544 VOL SEC PAGE 199

REVISION ___

TWR-17544 DOC NO. SEC

200

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

| DOC NO. | TWR-17544 | VOL | SEC | PAGE | 201

Figure 139 STS-28B Flex Bearing (180 deg)

Figure 140 STS-28B Aft Exit Cone-to-Forward Exit Cone Joint Interface (Joint #1)

REVISION	Y STATE OF THE STA	DOC NO. TWR-17544	VOL	
		SEC	PAGE	202

Thickol corporation and SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

 DOC NO.
 TWR-17544
 VOL

 SEC
 PAGE 203

REVISION _

Thickol CORPORATION SPACE OPERATIONS THE HELEVILLE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE

YTHAUQ SIGN

DOC NO. TWR-17544

SEC

204

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL

REVISION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

(0 deg) STS-28B Forward Exit Cone - Aft

DOC NO. - TWR-17544 SEC

PAGE

206

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

igure 145 STS-28B Forward Exit Cone - Aft End (120 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544

VOL

PAGE

207

DOC NO. TWR-17544 REVISION

SEC

PAGE 208

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL SEC PAGE 209

REVISION

Figure 148 STS-28B Throat/Forward Exit Cone Joint (Joint #4)

REVISION	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DOC NO.	TWR-17544	VOL	
		SEC		PAGE 2	10

the state of the s

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL SEC PAGE 211

REVISION

REVISION ___

Forward End (120 deg) STS-28B Forward Exit Cone

DOC NO TWR-17544 SEC PAGE 212

Figure 151 STS-28B Forward Exit Cone - Forward End (240 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 | VOL | PAGE | 213

REVISION

ELVES

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

CT PAGE NO. TWR-17544 VOL.

Figure 153 STS-28B Throat Aft End (120 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL.

SEC PAGE 215

REVISION _

ORIGINAL PAGE ALTERIAL BLACK AND WHITE PHOTOGRAPH THE PHOTOGRAPH

DOC NO. TWR-17544 | VOL | SEC | PAGE | 216

REVISION _

RTV Wavy Intermittently Around Approximately 50% Surface RTV Below Char Char Line 360 deg Line Throat Assembly Carbon Cloth Phenolic **Black Wet Powder** Char 7 at 203 deg Sample Taken Line Surface Aluminum Corrosion No Pitting Radial Axial A017736a-5 Nose Inlet Assembly Steel Radial OD Glass Cloth Carbon Cloth Phenolic Phenolic Aluminum **GCP** No Metal Damage No Corrosion Glass Cloth **Lightly Greased** Phenolic

Figure 155 STS-28B Nose Inlet/Throat Housing Joint (Joint #3)

REVISION	DO	OC NO.	TWR-17544		VOL
	SEC	SEC		PAGE 217	

gure 156 STS-28B Throat - Forward End (0 deg)

DOC NO. TWR-17544 VOL

Thickel corporation with Space operations Space operations State States Thickol CORPORATION WITH

ORIGINAL PAGE

- Forward End

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 219

STS-28B Throat - Forward End (240 deg)

poc no. TWR-17544

220

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

TWR-17544 DOC NO. SEC 221

REVISION

MARKETON COLOR BY MALE

STS-28B Aft Inlet (-504) Ring - Aft End (120 deg) Figure 160

Y THE POS NOT

REVISION ___

222

REVISION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO. TWR-17544 VOL
SEC PAGE
223

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

162

TWR-17544 DOC NO. SEC PAGE 224

Figure 163 STS-28A Nose Inlet Housing/Flex Bearing Joint (Joint #2)

REVISION	DOC NO.	TWR-17544	VOL	
	SEC		225	

REVISION ____

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

igure 164 STS-28B Cowl - Forward End (0 deg)

DOC NO. TWR-17544 VOL

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

CHARGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL SEC PAGE 227

REVISION

DOC NO. TWR-17544 VOL SEC PAGE 228

REVISION ____

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

(0 deg)

STS-28B Nose Cap - Aft End

Figure 167

ORIGINAL PAGE IS OF FOOR QUALITY

OF POOR QUALITY

DOC NO. TWR-17544 VOL SEC PAGE 229

REVISION _

=

<u>-</u>

- -

DOC NO. TWR-17544 VOL

REVISION _

Figure 169 STS-28B Nose Cap - Aft End (240 deg)

ORIGINAL PAGE IS OF POOR QUALITY

 DOC NO. TWR-17544
 VOL

 SEC
 PAGE

 231

REVISION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO. TWR-17544 VOL.

SEC PAGE 232

Thickol CORPORATION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS

OF POOR QUALITY REVISION

DOC NO. TWR-17544 PAGE 233 STS-28B Bearing Forward End Ring (120 deg) Figure 171

gure 172 STS-28B Bearing Forward End Ring (240 deg)

REVISION ____

 $_{\text{DOC NO.}}$ TWR-17544

VOL

SEC

PAGE 234

Project To

Figure 173 STS-28B-Flex Bearing/Fixed Housing Joint (Joint #5)

REVISION	DOC NO.	TWR-1754	4	VOL
	SEC		PAGE	235

REVISION ____

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO. TWR-17544 | VOL.
SEC | PAGE 236

Thickol CORPORATION' SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 175 STS-28B Bearing Aft End Ring (120 deg)

DOC NO. TWR-17544 VOL.

SEC PAGE 237

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO. TWR-17544

iF ---

SEC

²³⁸

REVISION ___

=

__

ij

Thickol CORPORATION SPACE OPERATIONS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-28B Fixed Housing Forward End

DOC NO. TWR-17544 SEC

110/5071 11

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 178 STS-28B Fixed Housing Forward End (120 deg)

DOC NO. TWR-17544 VOL

REVISION __

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 179 STS-28B Fixed Housing Forward End (240 deg)

ORIGINAL PAGE IS OF POOR QUALITY

DOC NO. TWR-17544 VOL SEC PAGE 241

REVISION ___

----The state of the s T. (1) T. (1) E (2) (1) (1) (1) Harting Control of the Control of th

> St. 20AH BEDIT. VTUARUT ROOF TO

Appendix A

DOC NO. TWR-17544 VOL

REVISION

A-I

B-14

Nonconformance Discussion

DR 161110-01 Forward Exit Cone

P/N 5U52839-402, S/N 0000022 SMRB Criteria: 9, Waiver No.: RWW445

LDIs in Carbon Phenolic

Left-Hand Motor

Discrepancy

SB: No LDIs allowed in the carbon phenolic liner

Two LDIs located in the carbon phenolic liner starting at the interface and running parallel to the ply direction. Size of both LDIs is 0.206 in. longitudinal length by 0.015 in. radial depth by 1.65 in. circumferential width; they are located 4.536 and 4.613 in. from forward end of 5U-configuration part at 342 deg <u>::</u>

Disposition

Use as is

A32

360H005

B-15

Left-Hand Motor

DR 161110-01 Forward Exit Cone (Cont)

Nonconformance Discussion

DR 161110-01 Forward Exit Cone (Cont)

Waiver No.: RWW445 P/N 5U52839-402, S/N 0000022 SMRB Criteria: 9, Waiver No.:

Left-Hand Motor

LDIs in Carbon Phenolic

Justification

Indications lie below char and erosion lines at extreme OD of carbon phenolic liner

Alcohol wipe inspection of OD surface prior to glass overwrap was acceptable (no wetlines present)

Analysis shows minimum margin of safety (MMS) for interlaminar failure (delamination) is 8.33 (with a 1.4 factor of safety) Ply separation modeled in the tensile region at worst time slice (110 sec); maximum tensile stress of 160 psi Indications are shallower than the depth of the forward shear pin holes and located circumferentially between holes SRM-17A successfully demonstrated worse condition (DR 110029). LDI was 0.100 in. closer to carbon ID surface

Waiver Status

Approved

005-FRRa A34

005-FRHa A38

Nonconformance Discussion

DR 169467-02, Nozzle Flex Bearing Assembly

P/N 1U52840-03, S/N 0000007R1 SMRB Criteria: 4 Waiver No.: None

B-20

360H005

Left-Hand Motor

Total Unbond Area, Pad

Discrepancy

Pad total unbond area shall not exceed 20.0 in.² SB:

Total unbond area of pad No. 4 is 22.6 in.²; pad No. 7 is 22.8 in.²; pad No. 10 is 102.6 in.² <u>::</u>

Note: Results of first stretch inspection in refurbishment cycle

Disposition

Use as is

B-21

Nonconformance Discussion

DR 169467-02, Nozzle Flex Bearing Assembly (Cont)

P/N 1U52840-03, S/N 0000007R1 SMRB Criteria: 4 Waiver No.: None

Total Unbond Area, Pad

Left-Hand Motor

Justification

The total unbond area on pad No. 10 represents 1.62 percent of the total bond area in the pad The pad unbond areas did not change significantly from the inspection done prior (0.17 percent change); pad No. 7 showed 23.9 in.2 (-0.005 percent change); pad to use in PV-1. Prior to the successful use in PV-1, pad No. 4 showed 12.3 in.2 No. 10 showed 116.8 in.2 (0.22 percent change)

This bearing has been successfully acceptance tested, which verified structural and sealing integrity

The acceptance testing included vectoring to over 7 deg under load and tensile leak testing

The bearing will be in compression during motor operation

Worst-case condition was this bearing when successfully used in PV-1 with a maximum pad unbond area of 116.8 in.2 (1.84 percent)

Worse-case flight conditions were SRM-15B with 72.1 in.2 (1.20 percent) and STS-29B (360L003) with 75.8 in² (1.27 percent). Postflight observations conducted to date on STS-29B indicate acceptable performance

==-

Nonconformance Discussion

DR 169467-03, Nozzle Flex Bearing Assembly

P/N 1U52840-03, S/N 0000007R1 SMRB Criteria: 4 Waiver No.: None

Total Unbond Area, Pad

B-22

Left-Hand Motor

360H005

Discrepancy

SB: Pad total unbond area shall not exceed 20.0 in.²

ls: Total unbond area of pad No. 7 is 23.7 in.²

Result of second stretch inspection in refurbishment cycle Note:

Disposition

Use as is

DR 169467-03, Nozzle Flex Bearing Assembly (Cont)

P/N 1U52840-03, S/N 0000007R1 SMRB Criteria: 4 Waiver No.: None

Left-Hand Motor

Total Unbond Area, Pad

Justification

The total unbond area on pad No. 7 represents only 0.38 percent of the total bond area in the pad

(-0.005 percent change) of unbond area; therefore, there was no significant Prior to the successful use of this bearing on PV-1, pad No. 7 had 23.9 in.2 change This bearing has been successfully acceptance tested, which verified structural and sealing integrity

The acceptance testing included vectoring to over 7 deg under load and tensile leak testing

The bearing will be in compression during motor operation

Worse-case flight conditions were SRM-15B with 72.1 in.2 (1.20 percent) and STS-29B (360L003) with 75.8 in² (1.27 percent). Postflight observations conducted to date on STS-29B indicate acceptable performance 005-FRRa A41

005-FRB3 A47

Nonconformance Discussion

_

PD 169735-01, Outer Boot Ring, First Wrap

P/N 5U75546-103, S/N 0000023 SMRB Criteria: 10 Waiver No.: None

360H005 B-29

Left-Hand Motor

Cure Cycle Departure

Discrepancy

SB: Hold at 220°±10°F for 60 to 90 min (autoclave stage cycle)

Temperature was held at 220 ±10°F for 113 min, 23 min over maximum allowable <u>::</u>

Disposition

Acceptable departure

360H005 B-30

Nonconformance Discussion

PD 169735-01, 02, Outer Boot Ring, First Wrap (Cont)

PD 169735-01, Outer Boot Ring, First Wrap (Cont)

P/N 5U75546-103, S/N 0000023 SMRB Criteria: 10 Waiver No.: None

360H005 B-31

Left-Hand Motor

Cure Cycle Departure

Justification

Part jell and debulk are complete by end of normal 220°F hold

Additional time at this temperature will not impact part quality. The cure of the staged first wrap is completed during the second wrap full cure cycle Carbon phenolic tag end properties are acceptable and fall within fired HPM outer boot ring data base

	ğ	Measured	Specifica	Specification Limits
	First Wrap	Second Wrap	Minimum	Maximum
Specific Gravity	1,45	1.46	1.40	1.55
Residual Volatiles (percent)	2.75	2.65		3.00
Resin Content (percent)	31.58	32.30	30.0	40.0
Compressive Strength (psi)	33,846	28,037	18,200	55,000

PD 169735-01, Outer Boot Ring, First Wrap (Cont)

Waiver No.: None P/N 5U75546-103, S/N 0000023 SMRB Criteria: 10 Waiver No.:

Cure Cycle Departure

Left-Hand Motor

Justification (Cont)

History of similar process departures

in the same manner with the same materials and there is history of a similar cure incorporation of the two-stage cure. However, the HPM aft exit cone was cured There is no history for this anomaly since redesign of the outer boot ring and

Aft exit cone liner (PD 115877-02, P/N 1U52188-02, S/N 0000025)

The carbon phenolic autoclave stage cure $220^{\circ}\pm10^{\circ}$ F hold was 139 min, 49 min over maximum allowable

Flown on SRM-19A with acceptable performance

A50

005-FHRa A50

005-FHRa A51

Nonconformance Discussion

PD 169735-02, Outer Boot Ring, First Wrap

Left-Hand Motor

B-33

360H005

P/N 5U75546-103, S/N 0000023 SMRB Criteria: 10 Waiver No.: None

Cure Cycle Departure

Discrepancy

Reduce temperature from 220°±10°F to 160°±10°F at an overall average rate not exceeding 0.5° F/min (autoclave stage cycle) SB:

Temperature was reduced at an overall average rate of 0.689°F/min <u>::</u>

Disposition

Acceptable departure

Justification

Anomalous cooldown lasted 15 min, followed by a 1-hr cooldown at an acceptable rate of 0.5°F/min maximum Alcohol wipe inspection acceptable, with no wetlines evidenced after each of three machining operations

were the

100-percent radiographic (X-ray) inspection revealed no LDIs or other anomalies in the carbon billet B-55

Nonconformance Discussion

DR 173080-01, -02 Aft Exit Cone Liner

P/N 5U76123-402, S/N 0000017 SMRB Criteria: 8, Waiver No.: None

Left-Hand Motor

LDIs in Glass-Cloth Phenolic (GCP)

Discrepancy

LDIs within the GCP larger than 2.5-in. circumferential width, 1.9-in. longitudinal length, or 0.025-in. radial depth are unacceptable SB:

Numerous LDIs exceed one or more of the above dimensions (see sketch for size and general location) <u>::</u>

Disposition Use as is

B-56 360H005 Left-Hand Motor Defect to Part OD (in.) 005-FRRa A74 0.29 0.30 0.31 0.29 0.31 Axial Location of Item-01/-02 LDIs GCP CCP No. of LDIs Max Radial (in.) 0.031 0.019 0.014 0.017 0.028 က Zone 2 Zone : Max Long (in.) 0.988 1.53 2.91 2.32 1.84 2.80 DR 173080-01,-02 Aft Exit Cone Liner (Cont) Location A74 (ded) 123 231 300 300 330 231 Nonconformance Discussion Zone 6 Zone 1 Zone 5 Max Circum (in.) Zone 4 2.70 2.81 2.86 2.76 2.76 2.86 2.86 (Maximum Reported Condition) Location of Interlaminar LDIs Distance Aft 5U Fwd End (in.) 19.5–35.5 39.9–48.7 39.0–45.6 28.7 Forward End 5U Overstock Configuration 30.8 ð Zone 8459

B-57

Nonconformance Discussion

DR 173080-01, -02, Aft Exit Cone Liner (Cont)

Waiver No.: None P/N 5U76123-402, S/N 0000017 SMRB Criteria: 8,

LDIs in GCP

Left-Hand Motor

Justification

Structural analysis shows that LDIs will not propagate through glass phenolic during motor operation

throughout motor operation; the interlaminar shear in the same areas is LDIs are located in areas which remain in normal compression low (maximum of 200 psi) The design MIMS for the aft exit cone GCP, including a 1.4 factor of safety, is 6.13 for interlaminar failure criteria (delamination) and 0.47 for in-plane failure criteria

None of the LDIs are located in either MMS region

The MMS for the LDI area is 20.63 for interlaminar failure criteria (delamination) and 3.25 for in-plane failure criteria Tensile button and shear testing show no reduction in material strength due to ply-end LDIs (TWR-19228)

360L001A and B aft exit cone GCP insulators. All of these cones showed nominal Interlaminar and ply-end LDI conditions have been seen on the PV-1 and performance A change to the engineering acceptance criteria is being proposed. If approved, the revised criteria would accept the LDI conditions documented in this DR

DR 173080-01, -02 Aft Exit Cone Liner

Waiver No.: None P/N 5U76123-402, S/N 0000017 SMRB Criteria: 8, Waiver No.:

B-55 360H005

_

-

Left-Hand Motor

LDIs in Glass-Cloth Phenolic (GCP)

Discrepancy

LDIs within the GCP larger than 2.5-in. circumferential width, 1.9-in. SB:

longitudinal length, or 0.025-in. radial depth are unacceptable

*:

Numerous LDIs exceed one or more of the above dimensions (see sketch for size and general location) <u>s:</u>

Disposition

Use as is

B-62

Nonconformance Discussion

DR 173099-01, Aft Exit Cone Assembly

P/N 1U76123-01, S/N 0000014 SMRB Criteria: 8, Waiver No.: None

LDIs in GCP

Left-Hand Motor

Discrepancy

LDIs within the GCP larger than 2.5-in. circumferential width, 1.9-in. SB:

longitudinal length, or 0.025-in. radial depth are unacceptable

Four LDIs exceed one or more of the above dimensions (see sketch for size and location); all classified as ply-end conditions (longitudinal length <0.200 in.) <u>::</u>

Disposition

Use as is

360H005 B-63

Nonconformance Discussion

DR 173099-01, Aft Exit Cone Assembly (Cont)

Left-Hand Motor

Location of Ply-End LDIs Within the GCP (maximum reported condition)

	Radial Depth (in	0.031	0.027	0.027	0.027
7	Longitudinal Length (in.)	0.092	0.029	0.048	0.068
/	Distance Aft of Compliance Ring (in.)	8.19	11.57	15.90	21.36
	LDI No.	_	7	က	4

B-64

Nonconformance Discussion

DR 173099-01, Aft Exit Cone Assembly (Cont)

P/N 1U76123-01, S/N 0000014 SMRB Criteria: 8, Waiver No.: None

LDIs in GCP

Left-Hand Motor

Justification

Structural analysis shows that LDIs will not propagate through glass phenolic during motor operation

throughout motor operation; the interlaminar shear in the same areas is LDIs are located in areas which remain in normal compression very low (maximum of 30 psi) The design MMS for the aft exit cone GCP, including a 1.4 factor of safety, is 6.13 for interlaminar failure criteria (delamination) and 0.47 for in-plane failure criteria

None of the LDIs are located in either MMS region

The MMS for the LDI areas is 97.6 for interlaminar failure criteria (delamination) and 0.82 for in-plane failure criteria (with 1.4 factor of safety) Tensile button and shear testing show no reduction in material strength due to ply end LDIs (TWR-19228) Ply-end LDI conditions have been seen on the PV-1 and 360L001A and B aft exit cone GCP insulators. All of these cones showed nominal performance A change to the engineering acceptance criteria is being proposed. If approved, the revised criteria would accept the LDI conditions documented in this DR

360H005

<u>=</u>

=

=

B-68

DR 173448-01 Fixed Housing Assembly Nonconformance Discussion

Left-Hand Motor

Surface Blemish

Discrepancy

P/N 1U52862-01 (901), S/N 0000014 SMRB Criteria: 8 Waiver No.: None

Blemish less than 1.0 in. long, 0.125 in. wide, 0.030 in. deep is SB:

acceptable

Blemish checks 1.900 in. long, 0.225 in. wide, 0.045 in. deep, located at 148 deg on carbon phenolic forward ID surface <u>::</u>

1797 F

Disposition

Repair—Remove blemish by machining

Justification

Radiographic (X-ray) inspection revealed no subsurface LDIs or cracks

The noted blemish has been completely removed by machining

After repair, alcohol wipe inspection showed no surface anomalies

All sharp edges have been removed

Note: Repair of this discrepancy resulted in the anomalous surface profile documented in Item -03 of this DR

A86

005-FRRa A86

Left-Hand Motor

005-FRRa A88

Nonconformance Discussion

DR 173448-02, Fixed Housing Assembly

Left-Hand Motor

B-70

360H005

-

=

P/N 1U52862-01 (901), S/N 0000014 SMRB Criteria: 8 Waiver No.: None

Wetline indications

Discrepancy

No wetline indications allowed on machined surfaces of the carbon SB:

phenolic

Maximum condition checks 13.5 in. circumferential length at 162 to 180 Numerous wetline indications evident on carbon phenolic forward ID. <u>::</u>

Disposition

Repair—Remove wetline indications by machining

Justification

Radiographic (X-ray) inspection revealed no subsurface LDIs or cracks

The noted wetline indications have been completely removed by machining

After repair, alcohol wipe inspection showed no surface anomalies remain

All sharp edges have been removed

Note: Repair of these discrepancies resulted in the anomalous surface profile documented in Item -03 of this DR

DR 173448-02, Fixed Housing Assembly (Cont)

Left-Hand Motor

A89

005-FRRa A89

PD 169737-01, Outer Boot ring, First Wrap

P/N 5U75546-103, S/N 0000022 SMRB Criteria: 10 Waiver No.: None

Cure Cycle Departure

Right-Hand Motor

B-34

360H005

Discrepancy

Hold at 220° ±10°F for 60 to 90 min (autoclave stage cycle) SB:

Temperature was held at 220°±10°F for 113 min, 23 min over maximum allowable <u>::</u>

Disposition

Acceptable departure

Nonconformance Discussion

PD 169737-01,-02, Outer Boot Ring, First Wrap (Cont)

Right-Hand Motor

PD 169737-01, Outer Boot ring, First Wrap (Cont)

Waiver No.: None P/N 5U75546-103, S/N 0000022 SMRB Criteria: 10 Waiver No.:

B-36 360H005

Right-Hand Motor

Cure Cycle Departure

Justification

Part jell and debulk are complete by end of normal 220°F hold

Additional time at temperature will not impact part quality. The cure of the staged first wrap is completed during the second wrap full cure cycle Carbon phenolic tag end properties are acceptable and fall within fired HPM outer boot ring data base

	Ž	Measured	Specifica	Specification Limits
	First Wrap	Second Wrap	Minimum	Maximum
Specific Gravity	1.45	1.45	1.40	1.55
Residual Volatiles (percent)	2.34	2.18	I	3.00
Resin Content (percent)	31.47	31.33	30.0	40.0
Compressive Strength (psi)	33,626	32,454	18,200	55,000

B-37

Nonconformance Discussion

PD 169737-01, Outer Boot Ring, First Wrap (Cont)

P/N 5U75546-103, S/N 0000022 SMRB Criteria: 10 Waiver No.: None

Right-Hand Motor

Cure Cycle Departure

Justification (Cont)

History of similar process departures

in the same manner with the same materials and there is history of a similar cure incorporation of the two stage cure. However, the HPM aft exit cone was cured There is no history for this anomaly since redesign of the outer boot ring and departure

Aft exit cone liner (PD 115877-02, P/N 1U52188-02, S/N 0000025)

The carbon phenolic autoclave stage cure 220°±10°F hold was 139 min, 49 min over maximum allowable

Flown on SRM-19A with acceptable performance

005-FRRa A56

Nonconformance Discussion

PD 169737-02, Outer Boot Ring, First Wrap

Right-Hand Motor

B-38

360H005

E

P/N 5U75546-103, S/N 0000022 SMRB Criteria: 10 Waiver No.: None

Cure Cycle Departure

Discrepancy

Reduce temperature from 220°±10°F to 160°±10°F at an overall average SB:

rate not exceeding 0.5°F/min (autoclave stage cycle)

Temperature was reduced at an overall average rate of 0.689°F/min <u>::</u>

Disposition

Acceptable departure

Justification

Anomalous cooldown lasted 15 min, followed by a 1-hr cooldown at an acceptable rate of 0.5°F/min maximum Alcohol wipe inspection acceptable, with no wetlines evidenced after each of three machining operations 100-percent radiographic (X-ray) inspection revealed no LDIs or other anomalies in the carbon billet

DR 169782-03, Nozzle Flex Bearing Assembly

Waiver No.: None P/N 1U52840-03, S/N 0000005R1 SMRB Criteria: 4 Waiver No.: N

Right-Hand Motor

Pad Unbond

Discrepancy

Maximum depth for a single unbond shall not exceed 3.2 inch SB:

Maximum unbond depth checks 3.4 in. on pad No. 3 <u>::</u>

Disposition

Use as is

Justification

Bearing performance, sealing, and structural integrity will not be affected

refurbishment unbond inspection indicated a depth of 3.55 in. prior to the The maximum depth has not changed significantly since the previous bearing's successful use on QM-7 The bearing has passed acceptance testing, which included being vectored to over 7 deg under load and tensile leak testing

The bearing is in compression during motor operation

The 1U51060-01, S/N 0000003R2 bearing successfully flew in SRM-1B, with a pad unbond depth of 3.21 in. (ref DR 50406–01)

A57

005-FHRa A57

DR 169782-03 Nozzle Flex Bearing Assembly (Cont)

360H005 B-40 Right-Hand Motor

Flex Bearing Elastomer Pad Unbonds

3. -2141. - Aft End Ring Elastomer Pad No. 3 ← Forward End Ring

A58

TWR-17544

4-31

B-47

DR 170806-01, Aft Exit Cone Assembly

Nonconformance Discussion

P/N 1U76123-01, S/N 0000015 SMRB Criteria: 8, Waiver No.: None

LDIs in GCP Right-Hand Motor

Discrepancy

LDIs within the GCP larger than 2.5-in. circumferential width, 1.9-in. SB:

longitudinal length, or 0.025-in. radial depth are unacceptable

circumferential width or 0.110 in. Iongitudinal length or 0.040 in. radial Two areas contain LDIs which exceed one or more of the above dimensions. Maximum dimensions of any single LDI are 3.78 in. <u>::</u>

Area No. 1 is located 49.30 to 69.40 in. aft of part forward end

Area No. 2 is located 16.91 to 25.29 in. forward of part aft end

All classified as ply-end conditions (longitudinal length < 0.200 in.)

Disposition

Use as is

A65

005-FRRa A65

360H005

B-48

Right-Hand Motor

DR 170806-01 Aft Exit Cone Assembly (Cont)

Nonconformance Discussion

Area No. 2 - Area No. 1 → - GCP

99Y

005-FRHa A66

DR 170806-01, Aft Exit Cone Assembly (Cont)

Waiver No.: None P/N 1U76123-402, S/N 0000017 SMRB Criteria: 8,

Right-Hand Motor

LDIs in GCP

Structural analysis shows that LDIs will not propagate during motor operation

throughout motor operation; the interlaminar shear in the same areas is LDIs are located in areas which remain in normal compression very low (maximum of 100 psi) The design MMS for the aft exit cone GCP, including a 1.4 factor of safety, is 6.13 for interlaminar failure criteria (delamination) and 0.47 for in-plane failure criteria

None of the LDIs are located in either MMS region

The MMS for the LDI areas is 49.0 for interlaminar failiure criteria (delamination) and 0.75 for in-plane failure criteria (with a 1.4 factor of safety)

Tensile button and shear testing show no reduction in material strength due to ply-end LDIs (TWR-19228)

Ply-end LDI conditions have been seen on PV-1 and 360L001A and B aft exit cone GCP insulators. All of these cones showed nominal performance A change to the engineering acceptance criteria is being proposed. If approved, the revised criteria would accept the LDI conditions documented on this DR

A67

005-FRRa A67

360H005

Nonconformance Discussion DR 170806-02, Aft Exit Cone Assembly

P/N 1U76123-01, S/N 0000015 SMRB Criteria: 8, Waiver No.: None

B-50

Right-Hand Motor

High Density Indications in GCP

Discrepancy

High density indication (HDI) with projected area less than 0.050 in.² is acceptable SB:

circumferential) located in GCP, 36.14 in. forward of part aft end at 216 HDI with projected area of 0.0675 in.2 (0.250 in. longitudinal by 0.270 in. <u>s</u>

Note: Six other HDIs exist in general area of noted HDI. All six have deg. HDI runs parallel to glass ply direction projected areas less than 0.050 in.2

Disposition

Use as is

DR 170806-02, Aft Exit Cone Assembly (Cont)

P/N 1U76123-01, S/N 0000015 SMRB Criteria: 8, Waiver No.: None

Right-Hand Motor

B-52

360H005

Assembly (Cont)

HDIs in GCP

Justification

Structural analysis shows that HDI will not propagate a delamination through the glass phenolic during motor operation

motor operation; the interlaminar shear stresses in those same areas HDIs are located in areas which remain in normal compression during are very low (maximum of 20 psi) The MIMS in the region of the defects are 626 for interlaminar failure criteria (delamination) and 1.15 for in-plane failure criteria

Both minimum margins of safety include a 1.4 factor of safety

A similar HDI was flown on the SRM-18A exit cone

Projected area of 0.066 in.2 based on maximum dimensions of 0.487 in. longitudinal by 0.135 in. circumferential

Appendix B

DOC NO. TWR-17544 VOL

REVISION ____

POSTFIRE ANOMALY RECORD (PFAR)

1. PFAR NUMBER 360H005A-03	3. INSPECTION LOCATION KSC X T-24/T-97	4. REFERENCE SQUAWK NUMBER 28-010	5. REFERENCE PR NUMBER PV6-136878	
2. COMPONENT PROGRAM TEAM NOZZLE	H-7 A-2	6. REFERENCE IFA NUMBER N/A	7. REFERENCE SPR NUMBER N/A	
8. TITLE	CONE LINER POLYSULFIDE GROOVE			
9. CLASSIFICATION OBSERVATION	MINOR ANOMALY X	MAJOR ANOMALY	CRITICAL ANOMALY	
10. JUSTIFICATION OF CLASSIFICATION This condition represents a significant departure from the historical database. Corrective action is required but this problem has no impact on motor performance or program schedule.				
	0000001 AFT E	ART DESCRIPTION XIT CONE ASSEMBLY		
14. REPORTED BY (NAME / ORGAN J. E. MILES / NOZZLE/FI				
15. RESPONSIBLE PROGRAM MANAGI E. L. DIEHL / NOZZLE PI		16. RESPONSIBLE POSTFIRE ENG E. D. MOSES / POSTFIR	INEER (NAME / ORGANIZATION) E HARDWARE EVALUATION	
17. RESPONSIBLE INTEGRATION EF H. D. HUPPI / SYSTEMS	NGINEER (NAME / ORGANIZATION) INTEGRATION ENGINEERING	18. RESPONSIBLE ACTIONEE (NA R. J. GEORGE / NOZZLE/	ME / ORGANIZATION) FLEX BEARING DESIGN ENGINEERIN	
19. DESCRIPTION (ATTACH PFORS, FIGURES, PHOTOGRAPHS, ETC.) Foreign residue from 265 to 271 degrees and a small pinhole at 268 degrees were found on the forward surface of the aftexit cone liner polysulfide groove.				
20. HISTORY This was a first-time RSRM oc				
21. CAUSE See continuation sheet.				
22. CORRECTIVE ACTION The postflight team will continue to monitor future postflight aft exit cone joints. Recommend this PFAR be transferred to Thiokol LSS office at KSC for review of leak check and polysulfide repair procedures.				
23. RESULTS KSC Thiokol LSS office has conducted a review of the leak check and polysulfide repair procedures associated with this anomaly. Their attached response (ref. memorandum E690/RCH-90-A145, dated 5 March 1990) shows no apparent polysulfide repair procedures, leak check operations, or PR conditions during 360H005A processing that would result in the described foreign residue condition.				
24. REPORT RESULTS TO RPRB? YES NO X	/S/T. L. JOHNSON	ATE: RPRB SECRETAR' 09/06/89 N/A	Y: DATE: N/A	
25. RPRB MEETING DATES ORIGINATION: 09/06/89 CLOSURE:	/S/C. A. RUSSELL PM: D	ATE: 09/07/89 PM: ATE: /S/E. L. DIEI 09/07/89	DATE: 03/29/90	

REV. 2/1/90

21. CAUSE (continuation)

Analysis of the residue shows it to be silicon dioxide (silica). There were no blowpaths through the joint, indicating this did not occur during motor operation. This residue was in line with the leak check port at 268

The pin hole was caused by removal of a small glass fiber during disassembly assessment. The pin hole was sectioned and observed to terminate approximately 0.3 inch deep within the polysulfide. The fiber is believed to have been introduced during polysulfide groove fill operations. At that time, nozzle processing was done in a non-contamination controlled building (M113). Thickol polysulfide groove fill operations (as of 360L006) are now done in a contamination controlled facility. Airborne particulates such as small fibers cannot be introduced during processing in the clean room environment (M113A).

POSTFIRE ANOMALY RECORD (PFAR)

1. PFAR NUMBER 360H005A-08	3. INSPECTION LOCATION KSC X T-24/T-97	4. REFERENCE SQUAWK NUMBER 28-032	5. REFERENCE PR NUMBER PV6-137178	
2. COMPONENT PROGRAM TEAM NOZZLE	H-7 A-2	6. REFERENCE IFA NUMBER N/A	7. REFERENCE SPR NUMBER	
8. TITLE FOREIGN MATERIAL FOUND ON FI	XED HOUSING			
9. CLASSIFICATION OBSERVATION	MINOR ANOMALY X	MAJOR ANOMALY	CRITICAL ANOMALY	
10. JUSTIFICATION OF CLASSIFICATION This problem was previously identified on 360L002 and planning was updated to add methyl chloroform cleaning step.				
		T DESCRIPTION HOUSING ASSEMBLY		
14. REPORTED BY (NAME / ORGAN S. A. MEYER / NOZZLE/FI	IZATION / OBSERVATION DATE) LEX BEARING DESIGN ENGINEERING	/ 08/17/89		
15. RESPONSIBLE PROGRAM MANAGER (NAME / ORGANIZATION) E. L. DIEHL / NOZZLE PROGRAM MANAGEMENT 16. RESPONSIBLE POSTFIRE ENGINEER (NAME / ORGANIZATION) E. D. MOSES / POSTFIRE HARDWARE EVALUATION				
17. RESPONSIBLE INTEGRATION ENGINEER (NAME / ORGANIZATION) 18. RESPONSIBLE ACTIONEE (NAME / ORGANIZATION) C. A. RUSSELL / SYSTEMS INTEGRATION ENGINEERING R. J. GEORGE / NOZZLE/FLEX BEARING DESIGN ENGINEERI			E / ORGANIZATION) LEX BEARING DESIGN ENGINEERIN	
19. DESCRIPTION (ATTACH PFORS, White, sticky material was fo	, FIGURES, PHOTOGRAPHS, ETC.) bund on the fixed housing forwa	rd of the primary o-ring at th	e EA-913 interface.	
20. HISTORY				
21. CAUSE				
There was insufficient cleaning of the adhesive tape residue left subsequent to finalization of the liner bonding operations.				
22. CORRECTIVE ACTION Update planning to adequately clean the surface after liner bonding operations.				
update planning to adequately	clean the surface after timer	bonding operations.		
23. RESULTS Manufacturing Engineering has changed the planning (see OCR PAR No. 159122) to include cleaning of the surface. This is contained in Log No. 4871M, Op. 065, Step 525. They will also discuss this situation with the operations personnel. This procedure will be effective for Flight 108 and subsequent.				
24. REPORT RESULTS TO RPRB? YES NO X		VE ACTION 27. CLOSURE ATE: RPRB SECRETAR: D9/06/89 /S/S. T. MUNI		
25. RPRB MEETING DATES ORIGINATION: 09/06/89 CLOSURE:	STE: D/ /S/C. A. RUSSELL (PM: D/	ATE: 09/07/89 PM: ATE: /S/E. L. DIEI 09/07/89	DATE:	

POSTFIRE ANOMALY RECORD (PFAR)

1. PFAR NUMBER 360H005B-13	3. INSPECTION LOCATION KSC T-24/T-97	4. REFERENCE SQUAN		5. REFERENCE PR NUMBER N/A
2. COMPONENT PROGRAM TEAM NOZZLE	H-7 X A-2	6. REFERENCE IFA)		7. REFERENCE SPR NUMBER N/A
8. TITLE FOREIGN MATERIAL FOUND IN NO	ZZLE JOINT #3			
9. CLASSIFICATION OBSERVATION	MINOR ANOMALY X	MAJOR ANOMALY	••	CRITICAL ANOMALY
10. JUSTIFICATION OF CLASSIFIC This condition represents a s	CATION	e historical database		
	significant departure from the			
11. PART NUMBER 12	2. SERIAL NUMBER 13. P/	ART DESCRIPTION INLET-TO-THROAT JOIN	NT	
14. REPORTED BY (NAME / ORGANI L. E. WILKES / NOZZLE/FU	EX BEARING DESIGN ENGINEERING	G / N/A		
15. RESPONSIBLE PROGRAM MANAGE E. L. DIEHL / NOZZLE PR	R (NAME / ORGANIZATION)	16. RESPONSIBLE PO	OSTFIRE ENGIN	EER (NAME / ORGANIZATION)
17. RESPONSIBLE INTEGRATION ELC. A. RUSSELL / SYSTEMS	NGINEER (NAME / ORGANIZATION) INTEGRATION ENGINEERING	18. RESPONSIBLE AG	TIONEE (NAME / NOZZLE/FL	/ ORGANIZATION) EX BEARING DESIGN ENGINEERIN
19. DESCRIPTION (ATTACH PFORS During Clearfield nozzle disa	, FIGURES, PHOTOGRAPHS, ETC.) assembly, black powdery resido			
·				
20. HISTORY		• • • • • • • • • • • • • • • • • • • •		
24 CAUCE	s found to be a mix of charred			i
seawater. During splashdown	, this residue was forced into	the joint. Referen	nce memo 2463	-FY90-M041.
22. CORRECTIVE ACTION				
No corrective action is required. Close PFAR.				
23. RESULTS N/A				
24. REPORT RESULTS TO RPRB?	26. APPROVAL THROUGH CORREC	TIVE ACTION 27	. CLOSURE	
YES X NO	RPRB SECRETARY: /S/T. L. JOHNSON	DATE: R	PRB SECRETARY /S/S. T. MUNS	55 (45 (50
25. RPRB MEETING DATES ORIGINATION: 09/06/89 CLOSURE:	SIE: /S/C. A. RUSSELL PM: /S/E. L. DIEHL	09/07/89 PI	M: /S/E. L. DIEH	DATE: 02/13/90

REV. 2/1/90

TWR-17544 B-5

			_
			- -
		 	-
		 	_
			-
			_
			_
			=
			_
			_
			_
			-
			Ē
			-
			_
			-
			-
			₹

DISTRIBUTION

Recipient	No. of Copies	Mail Stop
K. Baker	1	L61B
M. Clark	1	427
E. L. Diehl	1	E14
T. Freston	1	242
J. E. Fonnesbeck	1	L62A
R. J. George	1	L62A
S. Graves	1	L50
D. Harris	1	L34
J. D. Leavitt	1	E14
D. Nisonger	1	M31
T. Olsen	1	411E
S. Olsen	1	L35
B. E. Phipps	1	L22
R. B. Roth	1	L83
G. Snider	1	411
R. K. Wilks	1	L62
L. G. Bailey	1	LOO
D. M. Smith, Jr.	1	L62A
D. M. Smith	1	L72A
S. Kulkarni	1	L00
J. V. Daines	1	L61
D. Bright	1	L63
F. Hunsaker	15	E62A
H. Huppi	1	L63
Print Crib	5	К23В
Vault	1	K23E